ﻻ يوجد ملخص باللغة العربية
The linear continuity of a function defined on a vector space means that its restriction on every affine line is continuous. For functions defined on $mathbb R^m$ this notion is near to the separate continuity for which it is required only the continuity on the straight lines which are parallel to coordinate axes. The classical Lebesgue theorem states that every separately continuous function $f:mathbb R^mtomathbb R$ is of the $(m-1)$-th Baire class. In this paper we prove that every linearly continuous function $f:mathbb R^mtomathbb R$ is of the first Baire class. Moreover, we obtain the following result. If $X$ is a Baire cosmic topological vector space, $Y$ is a Tychonoff topological space and $f:Xto Y$ is a Borel-measurable (even BP-measurable) linearly continuous function, then $f$ is $F_sigma$-measurable. Using this theorem we characterize the discontinuity point set of an arbitrary linearly continuous function on $mathbb R^m$. In the final part of the article we prove that any $F_sigma$-measurable function $f:partial Uto mathbb R$ defined on the boundary of a strictly convex open set $Usubsetmathbb R^m$ can be extended to a linearly continuous function $bar f:Xto mathbb R$. This fact shows that in the ``descriptive sense the linear continuity is not better than the $F_sigma$-measurability.
Let $fcolonmathbb{R}^2tomathbb{R}$. The notions of feebly continuity and very feebly continuity of $f$ at a point $langle x,yrangleinmathbb{R}^2$ were considered by I. Leader in 2009. We study properties of the sets $FC(f)$ (respectively, $VFC(f)sups
As proved in [16], for a Tychonoff space $X$, a locally convex space $C_{p}(X)$ is distinguished if and only if $X$ is a $Delta$-space. If there exists a linear continuous surjective mapping $T:C_p(X) to C_p(Y)$ and $C_p(X)$ is distinguished, then $C
A function $f:Xto mathbb R$ defined on a topological space $X$ is called returning if for any point $xin X$ there exists a positive real number $M_x$ such that for every path-connected subset $C_xsubset X$ containing the point $x$ and any $yin C_xset
Let $Sigma (X,mathbb{C})$ denote the collection of all the rings between $C^*(X,mathbb{C})$ and $C(X,mathbb{C})$. We show that there is a natural correlation between the absolutely convex ideals/ prime ideals/maximal ideals/$z$-ideals/$z^circ$-ideals
A function $f:Xto Y$ between topological spaces is called $sigma$-$continuous$ (resp. $barsigma$-$continuous$) if there exists a (closed) cover ${X_n}_{ninomega}$ of $X$ such that for every $ninomega$ the restriction $f{restriction}X_n$ is continuous