ترغب بنشر مسار تعليمي؟ اضغط هنا

Mesoscopic Spin Systems as Quantum Entanglers

50   0   0.0 ( 0 )
 نشر من قبل Maryam Sadat Mirkamali
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We quantify the resources required for entangling two uncoupled spin qubits through an intermediate mesoscopic spin system (MSS) by indirect joint measurement. Indirect joint measurement benefits from coherent magnification of the target qubits state in the collective magnetization of the MSS; such that a low-resolution collective measurement on the MSS suffices to prepare post-selected entanglement on the target qubits. A MSS consisting of two non-interacting halves, each coupled to one of the target qubits is identified as a geometry that allows implementing the magnification process with experimentally available control tools. It is proved that the requirements on the amplified state of the target qubits and the MSS perfectly map to the specifications of micro-macro entanglement between each target qubit and its nearby half of the MSS. In the light of this equivalence, the effects of experimental imperfections are explored; in particular, bipartite entanglement between the target qubits is shown to be robust to imperfect preparation of the MSS. Our study provides a new approach for using an intermediate spin system for connecting separated qubits. It also opens a new path in exploring entanglement between microscopic and mesoscopic spin systems.



قيم البحث

اقرأ أيضاً

Non-local properties of ensembles of quantum gates induced by the Haar measure on the unitary group are investigated. We analyze the entropy of entanglement of a unitary matrix U equal to the Shannon entropy of the vector of singular values of the re shuffled matrix. Averaging the entropy over the Haar measure on U(N^2) we find its asymptotic behaviour. For two--qubit quantum gates we derive the induced probability distribution of the interaction content and show that the relative volume of the set of perfect entanglers reads 8/3 pi approx 0.85. We establish explicit conditions under which a given one-qubit bistochastic map is unistochastic, so it can be obtained by partial trace over a one--qubit environment initially prepared in the maximally mixed state.
An atom attached to a micrometer-scale wire that is vibrating at a frequency of 100 MHz and with displacement amplitude 1 nm experiences an acceleration magnitude 10^9 ms^-2, approaching the surface gravity of a neutron star. As one application of su ch extreme non-inertial forces in a mesoscopic setting, we consider a model two-path atom interferometer with one path consisting of the 100 MHz vibrating wire atom guide. The vibrating wire guide serves as a non-inertial reference frame and induces an in principle measurable phase shift in the wave function of an atom traversing the wire frame. We furthermore consider the effect on the two-path atom wave interference when the vibrating wire is modeled as a quantum object, hence functioning as a quantum non-inertial reference frame. We outline a possible realization of the vibrating wire, atom interferometer using a superfluid helium quantum interference setup.
By performing a full analysis of the projected local density of states (LDOS) in a photonic crystal waveguide, we show that phase plays a crucial role in the symmetry of the light-matter interaction. By considering a quantum dot (QD) spin coupled to a photonic crystal waveguide (PCW) mode, we demonstrate that the light-matter interaction can be asymmetric, leading to unidirectional emission and a deterministic entangled photon source. Further we show that understanding the phase associated with both the LDOS and the QD spin is essential for a range of devices that that can be realised with a QD in a PCW. We also show how quantum entanglement can completely reverse photon propagation direction, and highlight a fundamental breakdown of the semiclassical dipole approximation for describing light-matter interactions in these spin dependent systems.
Understanding and mitigating decoherence is a key challenge for quantum science and technology. The main source of decoherence for solid-state spin systems is the uncontrolled spin bath environment. Here, we demonstrate quantum control of a mesoscopi c spin bath in diamond at room temperature that is composed of electron spins of substitutional nitrogen impurities. The resulting spin bath dynamics are probed using a single nitrogen-vacancy (NV) centre electron spin as a magnetic field sensor. We exploit the spin bath control to dynamically suppress dephasing of the NV spin by the spin bath. Furthermore, by combining spin bath control with dynamical decoupling, we directly measure the coherence and temporal correlations of different groups of bath spins. These results uncover a new arena for fundamental studies on decoherence and enable novel avenues for spin-based magnetometry and quantum information processing.
We present the probability preserving description of the decaying particle within the framework of quantum mechanics of open systems taking into account the superselection rule prohibiting the superposition of the particle and vacuum. In our approach the evolution of the system is given by a family of completely positive trace preserving maps forming one-parameter dynamical semigroup. We give the Kraus representation for the general evolution of such systems which allows one to write the evolution for systems with two or more particles. Moreover, we show that the decay of the particle can be regarded as a Markov process by finding explicitly the master equation in the Lindblad form. We also show that there are remarkable restrictions on the possible strength of decoherence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا