ﻻ يوجد ملخص باللغة العربية
We quantify the resources required for entangling two uncoupled spin qubits through an intermediate mesoscopic spin system (MSS) by indirect joint measurement. Indirect joint measurement benefits from coherent magnification of the target qubits state in the collective magnetization of the MSS; such that a low-resolution collective measurement on the MSS suffices to prepare post-selected entanglement on the target qubits. A MSS consisting of two non-interacting halves, each coupled to one of the target qubits is identified as a geometry that allows implementing the magnification process with experimentally available control tools. It is proved that the requirements on the amplified state of the target qubits and the MSS perfectly map to the specifications of micro-macro entanglement between each target qubit and its nearby half of the MSS. In the light of this equivalence, the effects of experimental imperfections are explored; in particular, bipartite entanglement between the target qubits is shown to be robust to imperfect preparation of the MSS. Our study provides a new approach for using an intermediate spin system for connecting separated qubits. It also opens a new path in exploring entanglement between microscopic and mesoscopic spin systems.
Non-local properties of ensembles of quantum gates induced by the Haar measure on the unitary group are investigated. We analyze the entropy of entanglement of a unitary matrix U equal to the Shannon entropy of the vector of singular values of the re
An atom attached to a micrometer-scale wire that is vibrating at a frequency of 100 MHz and with displacement amplitude 1 nm experiences an acceleration magnitude 10^9 ms^-2, approaching the surface gravity of a neutron star. As one application of su
By performing a full analysis of the projected local density of states (LDOS) in a photonic crystal waveguide, we show that phase plays a crucial role in the symmetry of the light-matter interaction. By considering a quantum dot (QD) spin coupled to
Understanding and mitigating decoherence is a key challenge for quantum science and technology. The main source of decoherence for solid-state spin systems is the uncontrolled spin bath environment. Here, we demonstrate quantum control of a mesoscopi
We present the probability preserving description of the decaying particle within the framework of quantum mechanics of open systems taking into account the superselection rule prohibiting the superposition of the particle and vacuum. In our approach