ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanoscale deformation mechanics reveal resilience in nacre of Pinna nobilis shell

107   0   0.0 ( 0 )
 نشر من قبل Robert Hovden
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The combination of soft nanoscale organic components with inorganic nanograins hierarchically designed by natural organisms results in highly ductile structural materials that can withstand mechanical impact and exhibit high resilience on the macro- and nano-scale. Our investigation of nacre deformation reveals the underlying nanomechanics that govern the structural resilience and absorption of mechanical energy. Using high-resolution scanning/transmission electron microscopy (S/TEM) combined with in situ indentation, we observe nanoscale recovery of heavily deformed nacre that restores its mechanical strength on external stimuli up to 80% of its yield strength. Under compression, nacre undergoes deformation of nanograins and non-destructive locking across organic interfaces such that adjacent inorganic tablets structurally join. The locked tablets respond to strain as a continuous material, yet the organic boundaries between them still restrict crack propagation. Remarkably, the completely locked interface recovers its original morphology without any noticeable deformation after compressive contact stresses as large as 1.2 GPa.



قيم البحث

اقرأ أيضاً

The electronic properties of heterojunction electron gases formed in GaN/AlGaN core/shell nanowires with hexagonal and triangular cross-sections are studied theoretically. We show that at nanoscale dimensions, the non-polar hexagonal system exhibits degenerate quasi-one-dimensional electron gases at the hexagon corners, which transition to a core-centered electron gas at lower doping. In contrast, polar triangular core/shell nanowires show either a non-degenerate electron gas on the polar face or a single quasi-one-dimensional electron gas at the corner opposite the polar face, depending on the termination of the polar face. More generally, our results indicate that electron gases in closed nanoscale systems are qualitatively different from their bulk counterparts.
138 - Ali Makke 2012
In layered materials, a common mode of deformation involves buckling of the layers under tensile deformation in the direction perpendicular to the layers. The instability mechanism, which operates in elastic materials from geological to nanometer sca les, involves the elastic contrast between different layers. In a regular stacking of hard and soft layers, the tensile stress is first accommodated by a large deformation of the soft layers. The inhibited Poisson contraction results in a compressive stress in the direction transverse to the tensile deformation axis. The hard layers sustain this transverse compression until buckling takes place and results in an undulated structure. Using molecular simulations, we demonstrate this scenario for a material made of triblock copolymers. The buckling deformation is observed to take place at the nanoscale, at a wavelength that depends on strain rate. In contrast to what is commonly assumed, the wavelength of the undulation is not determined by defects in the microstructure. Rather, it results from kinetic effects, with a competition between the rate of strain and the growth rate of the instability. http://www.pnas.org/content/early/2011/12/23/1111367109.abstract
Local-probe imaging of the ferroelectric domain structure and auxiliary bulk pyroelectric measurements were conducted at low temperatures with the aim to clarify the essential aspects of the orbitally driven phase transition in GaMo4S8, a lacunar spi nel crystal that can be viewed as a spin-hole analogue of its GaV4S8 counterpart. We employed multiple scanning probe techniques combined with symmetry and mechanical compatibility analysis to uncover the hierarchical domain structures, developing on the 10-100 nm scale. The identified domain architecture involves a plethora of ferroelectric domain boundaries and junctions, including primary and secondary domain walls in both electrically neutral and charged configurations, and topological line defects transforming neutral secondary walls into two oppositely charged ones.
The interaction of graphene with neighboring materials and structures plays an important role in its behavior, both scientifically and technologically. The interactions are complicated due to the interplay between surface forces and possibly nonlinea r elastic behavior. Here we review recent experimental and theoretical advances in the understanding of graphene adhesion. We organize our discussion into experimental and theoretical efforts directed toward: graphene conformation to a substrate, determination of adhesion energy, and applications where graphene adhesion plays an important role. We conclude with a brief prospectus outlining open issues.
Interfacial charge transfer plays an essential role in establishing the relative alignment of the metal Fermi level and the energy bands of organic semiconductors. While the details remain elusive in many systems, this charge transfer has been inferr ed in a number of photoemission experiments. We present electronic transport measurements in very short channel ($L < 100$ nm) transistors made from poly(3-hexylthiophene) (P3HT). As channel length is reduced, the evolution of the contact resistance and the zero-gate-voltage conductance are consistent with such charge transfer. Short channel conduction in devices with Pt contacts is greatly enhanced compared to analogous devices with Au contacts, consistent with charge transfer expectations. Alternating current scanning tunneling microscopy (ACSTM) provides further evidence that holes are transferred from Pt into P3HT, while much less charge transfer takes place at the Au/P3HT interface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا