ﻻ يوجد ملخص باللغة العربية
Finding the semantically accurate answer is one of the key challenges in advanced searching. In contrast to keyword-based searching, the meaning of a question or query is important here and answers are ranked according to relevance. It is very natural that there is almost no common word between the question sentence and the answer sentence. In this paper, an approach is described to find out the semantically relevant answers in the Bengali dataset. In the first part of the algorithm, a set of statistical parameters like frequency, index, part-of-speech (POS), etc. is matched between a question and the probable answers. In the second phase, entropy and similarity are calculated in different modules. Finally, a sense score is generated to rank the answers. The algorithm is tested on a repository containing a total of 275000 sentences. This Bengali repository is a product of Technology Development for Indian Languages (TDIL) project sponsored by Govt. of India and provided by the Language Research Unit of Indian Statistical Institute, Kolkata. The shallow parser, developed by the LTRC group of IIIT Hyderabad is used for POS tagging. The actual answer is ranked as 1st in 82.3% cases. The actual answer is ranked within 1st to 5th in 90.0% cases. The accuracy of the system is coming as 97.32% and precision of the system is coming as 98.14% using confusion matrix. The challenges and pitfalls of the work are reported at last in this paper.
The blocks world is a classic toy domain that has long been used to build and test spatial reasoning systems. Despite its relative simplicity, tackling this domain in its full complexity requires the agent to exhibit a rich set of functional capabili
It is essential for dialogue-based spatial reasoning systems to maintain memory of historical states of the world. In addition to conveying that the dialogue agent is mentally present and engaged with the task, referring to historical states may be c
Searching large digital repositories can be extremely frustrating, as common list-based formats encourage users to adopt a convenience-sampling approach that favours chance discovery and random search, over meaningful exploration. We have designed a
Similar question retrieval is a core task in community-based question answering (CQA) services. To balance the effectiveness and efficiency, the question retrieval system is typically implemented as multi-stage rankers: The first-stage ranker aims to
Ontologies have become the effective modeling for various applications and significantly in the semantic web. The difficulty of extracting information from the web, which was created mainly for visualising information, has driven the birth of the sem