ترغب بنشر مسار تعليمي؟ اضغط هنا

A practical two-stage training strategy for multi-stream end-to-end speech recognition

277   0   0.0 ( 0 )
 نشر من قبل Ruizhi Li
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The multi-stream paradigm of audio processing, in which several sources are simultaneously considered, has been an active research area for information fusion. Our previous study offered a promising direction within end-to-end automatic speech recognition, where parallel encoders aim to capture diverse information followed by a stream-level fusion based on attention mechanisms to combine the different views. However, with an increasing number of streams resulting in an increasing number of encoders, the previous approach could require substantial memory and massive amounts of parallel data for joint training. In this work, we propose a practical two-stage training scheme. Stage-1 is to train a Universal Feature Extractor (UFE), where encoder outputs are produced from a single-stream model trained with all data. Stage-2 formulates a multi-stream scheme intending to solely train the attention fusion module using the UFE features and pretrained components from Stage-1. Experiments have been conducted on two datasets, DIRHA and AMI, as a multi-stream scenario. Compared with our previous method, this strategy achieves relative word error rate reductions of 8.2--32.4%, while consistently outperforming several conventional combination methods.



قيم البحث

اقرأ أيضاً

Automatic Speech Recognition (ASR) using multiple microphone arrays has achieved great success in the far-field robustness. Taking advantage of all the information that each array shares and contributes is crucial in this task. Motivated by the advan ces of joint Connectionist Temporal Classification (CTC)/attention mechanism in the End-to-End (E2E) ASR, a stream attention-based multi-array framework is proposed in this work. Microphone arrays, acting as information streams, are activated by separate encoders and decoded under the instruction of both CTC and attention networks. In terms of attention, a hierarchical structure is adopted. On top of the regular attention networks, stream attention is introduced to steer the decoder toward the most informative encoders. Experiments have been conducted on AMI and DIRHA multi-array corpora using the encoder-decoder architecture. Compared with the best single-array results, the proposed framework has achieved relative Word Error Rates (WERs) reduction of 3.7% and 9.7% in the two datasets, respectively, which is better than conventional strategies as well.
This paper proposes serialized output training (SOT), a novel framework for multi-speaker overlapped speech recognition based on an attention-based encoder-decoder approach. Instead of having multiple output layers as with the permutation invariant t raining (PIT), SOT uses a model with only one output layer that generates the transcriptions of multiple speakers one after another. The attention and decoder modules take care of producing multiple transcriptions from overlapped speech. SOT has two advantages over PIT: (1) no limitation in the maximum number of speakers, and (2) an ability to model the dependencies among outputs for different speakers. We also propose a simple trick that allows SOT to be executed in $O(S)$, where $S$ is the number of the speakers in the training sample, by using the start times of the constituent source utterances. Experimental results on LibriSpeech corpus show that the SOT models can transcribe overlapped speech with variable numbers of speakers significantly better than PIT-based models. We also show that the SOT models can accurately count the number of speakers in the input audio.
Attention-based methods and Connectionist Temporal Classification (CTC) network have been promising research directions for end-to-end (E2E) Automatic Speech Recognition (ASR). The joint CTC/Attention model has achieved great success by utilizing bot h architectures during multi-task training and joint decoding. In this work, we present a multi-stream framework based on joint CTC/Attention E2E ASR with parallel streams represented by separate encoders aiming to capture diverse information. On top of the regular attention networks, the Hierarchical Attention Network (HAN) is introduced to steer the decoder toward the most informative encoders. A separate CTC network is assigned to each stream to force monotonic alignments. Two representative framework have been proposed and discussed, which are Multi-Encoder Multi-Resolution (MEM-Res) framework and Multi-Encoder Multi-Array (MEM-Array) framework, respectively. In MEM-Res framework, two heterogeneous encoders with different architectures, temporal resolutions and separate CTC networks work in parallel to extract complimentary information from same acoustics. Experiments are conducted on Wall Street Journal (WSJ) and CHiME-4, resulting in relative Word Error Rate (WER) reduction of 18.0-32.1% and the best WER of 3.6% in the WSJ eval92 test set. The MEM-Array framework aims at improving the far-field ASR robustness using multiple microphone arrays which are activated by separate encoders. Compared with the best single-array results, the proposed framework has achieved relative WER reduction of 3.7% and 9.7% in AMI and DIRHA multi-array corpora, respectively, which also outperforms conventional fusion strategies.
Voice-controlled house-hold devices, like Amazon Echo or Google Home, face the problem of performing speech recognition of device-directed speech in the presence of interfering background speech, i.e., background noise and interfering speech from ano ther person or media device in proximity need to be ignored. We propose two end-to-end models to tackle this problem with information extracted from the anchored segment. The anchored segment refers to the wake-up word part of an audio stream, which contains valuable speaker information that can be used to suppress interfering speech and background noise. The first method is called Multi-source Attention where the attention mechanism takes both the speaker information and decoder state into consideration. The second method directly learns a frame-level mask on top of the encoder output. We also explore a multi-task learning setup where we use the ground truth of the mask to guide the learner. Given that audio data with interfering speech is rare in our training data set, we also propose a way to synthesize noisy speech from clean speech to mitigate the mismatch between training and test data. Our proposed methods show up to 15% relative reduction in WER for Amazon Alexa live data with interfering background speech without significantly degrading on clean speech.
While significant improvements have been made in recent years in terms of end-to-end automatic speech recognition (ASR) performance, such improvements were obtained through the use of very large neural networks, unfit for embedded use on edge devices . That being said, in this paper, we work on simplifying and compressing Transformer-based encoder-decoder architectures for the end-to-end ASR task. We empirically introduce a more compact Speech-Transformer by investigating the impact of discarding particular modules on the performance of the model. Moreover, we evaluate reducing the numerical precision of our networks weights and activations while maintaining the performance of the full-precision model. Our experiments show that we can reduce the number of parameters of the full-precision model and then further compress the model 4x by fully quantizing to 8-bit fixed point precision.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا