ﻻ يوجد ملخص باللغة العربية
When can a polyomino piece of paper be folded into a unit cube? Prior work studied tree-like polyominoes, but polyominoes with holes remain an intriguing open problem. We present sufficient conditions for a polyomino with one or several holes to fold into a cube, and conditions under which cube folding is impossible. In particular, we show that all but five special emph{simple} holes guarantee foldability.
We study the problem of folding a polyomino $P$ into a polycube $Q$, allowing faces of $Q$ to be covered multiple times. First, we define a variety of folding models according to whether the folds (a) must be along grid lines of $P$ or can divide squ
We define the Helly number of a polyomino $P$ as the smallest number $h$ such that the $h$-Helly property holds for the family of symmetric and translated copies of $P$ on the integer grid. We prove the following: (i) the only polyominoes with Helly
It is shown that there exists a dihedral acute triangulation of the three-dimensional cube. The method of constructing the acute triangulation is described, and symmetries of the triangulation are discussed.
We introduce a computational origami problem which we call the segment folding problem: given a set of $n$ line-segments in the plane the aim is to make creases along all segments in the minimum number of folding steps. Note that a folding might alte
We provide a tight result for a fundamental problem arising from packing squares into a circular container: The critical density of packing squares into a disk is $delta=frac{8}{5pi}approx 0.509$. This implies that any set of (not necessarily equal)