ﻻ يوجد ملخص باللغة العربية
We define the Helly number of a polyomino $P$ as the smallest number $h$ such that the $h$-Helly property holds for the family of symmetric and translated copies of $P$ on the integer grid. We prove the following: (i) the only polyominoes with Helly number 2 are the rectangles, (ii) there does not exist any polyomino with Helly number 3, (iii) there exist polyominoes of Helly number $k$ for any $k eq 1,3$.
We study the problem of folding a polyomino $P$ into a polycube $Q$, allowing faces of $Q$ to be covered multiple times. First, we define a variety of folding models according to whether the folds (a) must be along grid lines of $P$ or can divide squ
When can a polyomino piece of paper be folded into a unit cube? Prior work studied tree-like polyominoes, but polyominoes with holes remain an intriguing open problem. We present sufficient conditions for a polyomino with one or several holes to fold
A measure for the visual complexity of a straight-line crossing-free drawing of a graph is the minimum number of lines needed to cover all vertices. For a given graph $G$, the minimum such number (over all drawings in dimension $d in {2,3}$) is calle
Polyominoes are a subset of polygons which can be constructed from integer-length squares fused at their edges. A system of polygons P is interlocked if no subset of the polygons in P can be removed arbitrarily far away from the rest. It is already k
We introduce a model for random geodesic drawings of the complete bipartite graph $K_{n,n}$ on the unit sphere $mathbb{S}^2$ in $mathbb{R}^3$, where we select the vertices in each bipartite class of $K_{n,n}$ with respect to two non-degenerate probab