ﻻ يوجد ملخص باللغة العربية
Fundamental properties of the spin-noise signal formation in a quantum-dot microcavity are studied by measuring the angular characteristics of the scattered light intensity. A distributed Bragg reflector microcavity was used to enhance the light-matter interaction with an ensemble of n-doped (In,Ga)As/GaAs quantum dots, which allowed us to study subtle effects of the noise signal formation. Detecting the scattered light outside of the aperture of the transmitted light, we measured the basic electron spin properties, like g-factor and spin dephasing time. Further, we investigated the influence of the microcavity on the scattering distribution and possibilities of signal amplification by additional resonant excitation.
We report on the first experimental observation of spin noise in a single semiconductor quantum well embedded into a microcavity. The great cavity-enhanced sensitivity to fluctuations of optical anisotropy has allowed us to measure the Kerr rotation
We theoretically study the coupled modes of a medium-size quantum dot, which may confine a maximum of ten electron-hole pairs, and a single photonic mode of an optical microcavity. Ground-state and excitation energies, exciton-photon mixing in the wa
We consider a double quantum dot in the Pauli blockade regime interacting with a nearby single spin. We show that under microwave irradiation the average electron occupations of the dots exhibit resonances that are sensitive to the state of the nearb
Mean-field evolution equations for the exciton and photon populations and polarizations (Bloch-Lamb equations) are written and numerically solved in order to describe the dynamics of electronic states in a quantum dot coupled to the photon field of a
Shot noise of quantum ring (QR) excitons in a p-i-n junction surrounded by a microcavity is investigated theoretically. Some radiative decay properties of a QR exciton in a microcavity can be obtained from the observation of the current noise, which