ﻻ يوجد ملخص باللغة العربية
We theoretically study the coupled modes of a medium-size quantum dot, which may confine a maximum of ten electron-hole pairs, and a single photonic mode of an optical microcavity. Ground-state and excitation energies, exciton-photon mixing in the wave functions and the emission of light from the microcavity are computed as functions of the pair-photon coupling strength, photon detuning, and polariton number.
Mean-field evolution equations for the exciton and photon populations and polarizations (Bloch-Lamb equations) are written and numerically solved in order to describe the dynamics of electronic states in a quantum dot coupled to the photon field of a
We propose and characterize a two-photon emitter in a highly polarised, monochromatic and directional beam, realized by means of a quantum dot embedded in a linearly polarized cavity. In our scheme, the cavity frequency is tuned to half the frequency
The Jaynes-Cummings model, describing the interaction between a single two-level system and a photonic mode, has been used to describe a large variety of systems, ranging from cavity quantum electrodynamics, trapped ions, to superconducting qubits co
We demonstrate that the spin of a Cr atom in a quantum dot (QD) can be controlled optically and we discuss the main properties of this single spin system. The photoluminescence of individual Cr-doped QDs and their evolution in magnetic field reveal a
We review the practical conditions required to achieve a non-equilibrium BEC driven by quantum dynamics in a system comprising a microcavity field mode and a distribution of localised two-level systems driven to a step-like population inversion profi