ﻻ يوجد ملخص باللغة العربية
We introduce a numerical solver for the spatially inhomogeneous Boltzmann equation using the Burnett spectral method. The modelling and discretization of the collision operator are based on the previous work [Z. Cai, Y. Fan, and Y. Wang, Burnett spectral method for the spatially homogeneous Boltzmann equation, arXiv:1810.07804], which is the hybridization of the BGK operator for higher moments and the quadratic collision operator for lower moments. To ensure the preservation of the equilibrium state, we introduce an additional term to the discrete collision operator, which equals zero when the number of degrees of freedom tends to infinity. Compared with the previous work [Z. Hu, Z. Cai, and Y. Wang,Numerical simulation of microflows using Hermite spectral methods, arXiv:1807.06236], the computational cost is reduced by one order. Numerical experiments such as shock structure calculation and Fourier flows are carried out to show the efficiency and accuracy of our numerical method.
A high-performance gas kinetic solver using multi-level parallelization is developed to enable pore-scale simulations of rarefied flows in porous media. The Boltzmann model equation is solved by the discrete velocity method with an iterative scheme.
The reduced speed of sound technique (RSST) has been used for efficient simulation of low Mach number flows in solar and stellar convection zones. The basic RSST equations are hyperbolic, and are suitable for parallel computation by domain decomposit
The general synthetic iteration scheme (GSIS) is extended to find the steady-state solution of nonlinear gas kinetic equation, removing the long-standing problems of slow convergence and requirement of ultra-fine grids in near-continuum flows. The ke
Fluid motion driven by thermal effects, such as that due to buoyancy in differentially heated three-dimensional (3D) enclosures, arise in several natural settings and engineering applications. It is represented by the solutions of the Navier-Stokes e
The capability to simulate a two-way coupled interaction between a rarefied gas and an arbitrary-shaped colloidal particle is important for many practical applications, such as aerospace engineering, lung drug deliver and semiconductor manufacturing.