ترغب بنشر مسار تعليمي؟ اضغط هنا

Semi-conservative reduced speed of sound technique for low Mach number flows with large density variations

64   0   0.0 ( 0 )
 نشر من قبل Haruhisa Iijima
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The reduced speed of sound technique (RSST) has been used for efficient simulation of low Mach number flows in solar and stellar convection zones. The basic RSST equations are hyperbolic, and are suitable for parallel computation by domain decomposition. The application of RSST is limited to cases where density perturbations are much smaller than the background density. In addition, non-conservative variables are required to be evolved using this method, which is not suitable in cases where discontinuities like shock waves co-exist in a single numerical domain. In this study, we suggest a new semi-conservative formulation of the RSST that can be applied to low Mach number flows with large density variations. We derive the wave speed of the original and newly suggested methods to clarify that these methods can reduce the speed of sound without affecting the entropy wave. The equations are implemented using the finite volume method. Several numerical tests are carried out to verify the suggested methods. The analysis and numerical results show that the original RSST is not applicable when mass density variations are large. In contrast, the newly suggested methods are found to be efficient in such cases. We also suggest variants of the RSST that conserve momentum in the machine precision. The newly suggested variants are formulated as semi-conservative equations, which reduce to the conservative form of the Euler equations when the speed of sound is not reduced. This property is advantageous when both high and low Mach number regions are included in the numerical domain. The newly suggested forms of RSST can be applied to a wider range of low Mach number flows.



قيم البحث

اقرأ أيضاً

117 - Zhicheng Hu , Zhenning Cai 2019
We introduce a numerical solver for the spatially inhomogeneous Boltzmann equation using the Burnett spectral method. The modelling and discretization of the collision operator are based on the previous work [Z. Cai, Y. Fan, and Y. Wang, Burnett spec tral method for the spatially homogeneous Boltzmann equation, arXiv:1810.07804], which is the hybridization of the BGK operator for higher moments and the quadratic collision operator for lower moments. To ensure the preservation of the equilibrium state, we introduce an additional term to the discrete collision operator, which equals zero when the number of degrees of freedom tends to infinity. Compared with the previous work [Z. Hu, Z. Cai, and Y. Wang,Numerical simulation of microflows using Hermite spectral methods, arXiv:1807.06236], the computational cost is reduced by one order. Numerical experiments such as shock structure calculation and Fourier flows are carried out to show the efficiency and accuracy of our numerical method.
152 - L. Lin , X. Liu , S. Dong 2019
We present an unconditionally energy-stable scheme for approximating the incompressible Navier-Stokes equations on domains with outflow/open boundaries. The scheme combines the generalized Positive Auxiliary Variable (gPAV) approach and a rotational velocity-correction type strategy, and the adoption of the auxiliary variable simplifies the numerical treatment for the open boundary conditions. The discrete energy stability of the proposed scheme has been proven, irrespective of the time step sizes. Within each time step the scheme entails the computation of two velocity fields and two pressure fields, by solving an individual de-coupled Helmholtz (including Poisson) type equation with a constant pre-computable coefficient matrix for each of these field variables. The auxiliary variable, being a scalar number, is given by a well-defined explicit formula within a time step, which ensures the positivity of its computed values. Extensive numerical experiments with several flows involving outflow/open boundaries in regimes where the backflow instability becomes severe have been presented to test the performance of the proposed method and to demonstrate its stability at large time step sizes.
This paper presents a topology optimization approach for surface flows, which can represent the viscous and incompressible fluidic motions at the solid/liquid and liquid/vapor interfaces. The fluidic motions on such material interfaces can be describ ed by the surface Navier-Stokes equations defined on 2-manifolds or two-dimensional manifolds, where the elementary tangential calculus is implemented in terms of exterior differential operators expressed in a Cartesian system. Based on the topology optimization model for fluidic flows with porous medium filling the design domain, an artificial Darcy friction is added to the area force term of the surface Navier-Stokes equations and the physical area forces are penalized to eliminate their existence in the fluidic regions and to avoid the invalidity of the porous medium model. Topology optimization for steady and unsteady surface flows can be implemented by iteratively evolving the impermeability of the porous medium on the 2-manifolds, where the impermeability is interpolated by the material density derived from a design variable. The related partial differential equations are solved by using the surface finite element method. Numerical examples have been provided to demonstrate this topology optimization approach for surface flows, including the boundary velocity driven flows, area force driven flows and convection-diffusion flows.
Fluid motion driven by thermal effects, such as that due to buoyancy in differentially heated three-dimensional (3D) enclosures, arise in several natural settings and engineering applications. It is represented by the solutions of the Navier-Stokes e quations (NSE) in conjunction with the thermal energy transport equation represented as a convection-diffusion equation (CDE) for the temperature field. In this study, we develop new 3D lattice Boltzmann (LB) methods based on central moments and using multiple relaxation times for the three-dimensional, fifteen velocity (D3Q15) lattice, as well as it subset, i.e. the three-dimensional, seven velocity (D3Q7) lattice to solve the 3D CDE for the temperature field in a double distribution function framework. Their collision operators lead to a cascaded structure involving higher order terms resulting in improved stability. In this approach, the fluid motion is solved by another 3D cascaded LB model from prior work. Owing to the differences in the number of collision invariants to represent the dynamics of flow and the transport of the temperature field, the structure of the collision operator for the 3D cascaded LB formulation for the CDE is found to be markedly different from that for the NSE. The new 3D cascaded (LB) models for thermal convective flows are validated for natural convection of air driven thermally on two vertically opposite faces in a cubic cavity enclosure at different Rayleigh numbers against prior numerical benchmark solutions. Results show good quantitative agreement of the profiles of the flow and thermal fields, and the magnitudes of the peak convection velocities as well as the heat transfer rates given in terms of the Nusselt number.
In this paper we advance physical background of the energy- and flux-budget turbulence closure based on the budget equations for the turbulent kinetic and potential energies and turbulent fluxes of momentum and buoyancy, and a new relaxation equation for the turbulent dissipation time-scale. The closure is designed for stratified geophysical flows from neutral to very stable and accounts for the Earth rotation. In accordance to modern experimental evidence, the closure implies maintaining of turbulence by the velocity shear at any gradient Richardson number Ri, and distinguishes between the two principally different regimes: strong turbulence at Ri << 1 typical of boundary-layer flows and characterised by the practically constant turbulent Prandtl number; and weak turbulence at Ri > 1 typical of the free atmosphere or deep ocean, where the turbulent Prandtl number asymptotically linearly increases with increasing Ri (which implies very strong suppression of the heat transfer compared to the momentum transfer). For use in different applications, the closure is formulated at different levels of complexity, from the local algebraic model relevant to the steady-state regime of turbulence to a hierarchy of non-local closures including simpler down-gradient models, presented in terms of the eddy-viscosity and eddy-conductivity, and general non-gradient model based on prognostic equations for all basic parameters of turbulence including turbulent fluxes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا