ﻻ يوجد ملخص باللغة العربية
Discrete integration in a high dimensional space of n variables poses fundamental challenges. The WISH algorithm reduces the intractable discrete integration problem into n optimization queries subject to randomized constraints, obtaining a constant approximation guarantee. The optimization queries are expensive, which limits the applicability of WISH. We propose AdaWISH, which is able to obtain the same guarantee but accesses only a small subset of queries of WISH. For example, when the number of function values is bounded by a constant, AdaWISH issues only O(log n) queries. The key idea is to query adaptively, taking advantage of the shape of the weight function being integrated. In general, we prove that AdaWISH has a regret of only O(log n) relative to an idealistic oracle that issues queries at data-dependent optimal points. Experimentally, AdaWISH gives precise estimates for discrete integration problems, of the same quality as that of WISH and better than several competing approaches, on a variety of probabilistic inference benchmarks. At the same time, it saves substantially on the number of optimization queries compared to WISH. On a suite of UAI inference challenge benchmarks, it saves 81.5% of WISH queries while retaining the quality of results.
Data that is gathered adaptively --- via bandit algorithms, for example --- exhibits bias. This is true both when gathering simple numeric valued data --- the empirical means kept track of by stochastic bandit algorithms are biased downwards --- and
Transfer Learning (TL) has shown great potential to accelerate Reinforcement Learning (RL) by leveraging prior knowledge from past learned policies of relevant tasks. Existing transfer approaches either explicitly computes the similarity between task
In E-commerce, advertising is essential for merchants to reach their target users. The typical objective is to maximize the advertisers cumulative revenue over a period of time under a budget constraint. In real applications, an advertisement (ad) us
Adaptive sequential decision making is one of the central challenges in machine learning and artificial intelligence. In such problems, the goal is to design an interactive policy that plans for an action to take, from a finite set of $n$ actions, gi
We prove novel algorithmic guarantees for several online problems in the smoothed analysis model. In this model, at each time an adversary chooses an input distribution with density function bounded above by $tfrac{1}{sigma}$ times that of the unifor