ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Deep Reinforcement Learning via Adaptive Policy Transfer

247   0   0.0 ( 0 )
 نشر من قبل Tianpei Yang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Transfer Learning (TL) has shown great potential to accelerate Reinforcement Learning (RL) by leveraging prior knowledge from past learned policies of relevant tasks. Existing transfer approaches either explicitly computes the similarity between tasks or select appropriate source policies to provide guided explorations for the target task. However, how to directly optimize the target policy by alternatively utilizing knowledge from appropriate source policies without explicitly measuring the similarity is currently missing. In this paper, we propose a novel Policy Transfer Framework (PTF) to accelerate RL by taking advantage of this idea. Our framework learns when and which source policy is the best to reuse for the target policy and when to terminate it by modeling multi-policy transfer as the option learning problem. PTF can be easily combined with existing deep RL approaches. Experimental results show it significantly accelerates the learning process and surpasses state-of-the-art policy transfer methods in terms of learning efficiency and final performance in both discrete and continuous action spaces.



قيم البحث

اقرأ أيضاً

244 - Ge Liu , Rui Wu , Heng-Tze Cheng 2020
Deep Reinforcement Learning (RL) is proven powerful for decision making in simulated environments. However, training deep RL model is challenging in real world applications such as production-scale health-care or recommender systems because of the ex pensiveness of interaction and limitation of budget at deployment. One aspect of the data inefficiency comes from the expensive hyper-parameter tuning when optimizing deep neural networks. We propose Adaptive Behavior Policy Sharing (ABPS), a data-efficient training algorithm that allows sharing of experience collected by behavior policy that is adaptively selected from a pool of agents trained with an ensemble of hyper-parameters. We further extend ABPS to evolve hyper-parameters during training by hybridizing ABPS with an adapted version of Population Based Training (ABPS-PBT). We conduct experiments with multiple Atari games with up to 16 hyper-parameter/architecture setups. ABPS achieves superior overall performance, reduced variance on top 25% agents, and equivalent performance on the best agent compared to conventional hyper-parameter tuning with independent training, even though ABPS only requires the same number of environmental interactions as training a single agent. We also show that ABPS-PBT further improves the convergence speed and reduces the variance.
Deep reinforcement learning algorithms require large amounts of experience to learn an individual task. While in principle meta-reinforcement learning (meta-RL) algorithms enable agents to learn new skills from small amounts of experience, several ma jor challenges preclude their practicality. Current methods rely heavily on on-policy experience, limiting their sample efficiency. The also lack mechanisms to reason about task uncertainty when adapting to new tasks, limiting their effectiveness in sparse reward problems. In this paper, we address these challenges by developing an off-policy meta-RL algorithm that disentangles task inference and control. In our approach, we perform online probabilistic filtering of latent task variables to infer how to solve a new task from small amounts of experience. This probabilistic interpretation enables posterior sampling for structured and efficient exploration. We demonstrate how to integrate these task variables with off-policy RL algorithms to achieve both meta-training and adaptation efficiency. Our method outperforms prior algorithms in sample efficiency by 20-100X as well as in asymptotic performance on several meta-RL benchmarks.
We propose a policy improvement algorithm for Reinforcement Learning (RL) which is called Rerouted Behavior Improvement (RBI). RBI is designed to take into account the evaluation errors of the Q-function. Such errors are common in RL when learning th e $Q$-value from finite past experience data. Greedy policies or even constrained policy optimization algorithms which ignore these errors may suffer from an improvement penalty (i.e. a negative policy improvement). To minimize the improvement penalty, the RBI idea is to attenuate rapid policy changes of low probability actions which were less frequently sampled. This approach is shown to avoid catastrophic performance degradation and reduce regret when learning from a batch of past experience. Through a two-armed bandit with Gaussian distributed rewards example, we show that it also increases data efficiency when the optimal action has a high variance. We evaluate RBI in two tasks in the Atari Learning Environment: (1) learning from observations of multiple behavior policies and (2) iterative RL. Our results demonstrate the advantage of RBI over greedy policies and other constrained policy optimization algorithms as a safe learning approach and as a general data efficient learning algorithm. An anonymous Github repository of our RBI implementation is found at https://github.com/eladsar/rbi.
421 - Zhuangdi Zhu , Kaixiang Lin , 2020
Reinforcement Learning (RL) is a key technique to address sequential decision-making problems and is crucial to realize advanced artificial intelligence. Recent years have witnessed remarkable progress in RL by virtue of the fast development of deep neural networks. Along with the promising prospects of RL in numerous domains, such as robotics and game-playing, transfer learning has arisen as an important technique to tackle various challenges faced by RL, by transferring knowledge from external expertise to accelerate the learning process. In this survey, we systematically investigate the recent progress of transfer learning approaches in the context of deep reinforcement learning. Specifically, we provide a framework for categorizing the state-of-the-art transfer learning approaches, under which we analyze their goals, methodologies, compatible RL backbones, and practical applications. We also draw connections between transfer learning and other relevant topics from the RL perspective and explore their potential challenges as well as open questions that await future research progress.
In recent years significant progress has been made in dealing with challenging problems using reinforcement learning.Despite its great success, reinforcement learning still faces challenge in continuous control tasks. Conventional methods always comp ute the derivatives of the optimal goal with a costly computation resources, and are inefficient, unstable and lack of robust-ness when dealing with such tasks. Alternatively, derivative-based methods treat the optimization process as a blackbox and show robustness and stability in learning continuous control tasks, but not data efficient in learning. The combination of both methods so as to get the best of the both has raised attention. However, most of the existing combination works adopt complex neural networks (NNs) as the policy for control. The double-edged sword of deep NNs can yield better performance, but also makes it difficult for parameter tuning and computation. To this end, in this paper we presents a novel method called FiDi-RL, which incorporates deep RL with Finite-Difference (FiDi) policy search.FiDi-RL combines Deep Deterministic Policy Gradients (DDPG)with Augment Random Search (ARS) and aims at improving the data efficiency of ARS. The empirical results show that FiDi-RL can improves the performance and stability of ARS, and provide competitive results against some existing deep reinforcement learning methods

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا