ﻻ يوجد ملخص باللغة العربية
We investigate the growth of Fourier coefficients of Siegel paramodular forms built by exponentially lifting weak Jacobi forms, focusing on terms with large negative discriminant. To this end we implement a method based on deforming contours that expresses the coefficients of all such terms as residues. We find that there are two types of weak Jacobi forms, leading to two different growth behaviors: the more common type leads to fast, exponential growth, whereas a second type leads to slower growth, akin to the growth seen in ratios of theta functions. We give a simple criterion to distinguish between the two types, and give a simple closed form expression for the coefficients in the slow growing case. In a companion article [1], we provide physical applications of these results to symmetric product orbifolds and holography.
This is a survey based on the construction of Siegel modular forms of degree 2 and 3 using invariant theory in joint work with Fabien Clery and Carel Faber.
We study the Picard-Lefschetz formula for the Siegel modular threefold of paramodular level and prove the weight-monodromy conjecture for its middle degree inner cohomology with arbitrary automorphic coefficients. We give some applications to the Lan
We give an explicit conjectural formula for the motivic Euler characteristic of an arbitrary symplectic local system on the moduli space A_3 of principally polarized abelian threefolds. The main term of the formula is a conjectural motive of Siegel m
We propose an atomistic model for correlated particle dynamics in liquids and glasses predicting both slow stretched-exponential relaxation (SER) and fast compressed-exponential relaxation (CER). The model is based on the key concept of elastically i
We study the cohomology of certain local systems on moduli spaces of principally polarized abelian surfaces with a level 2 structure. The trace of Frobenius on the alternating sum of the etale cohomology groups of these local systems can be calculate