ﻻ يوجد ملخص باللغة العربية
Fractons emerge as charges with reduced mobility in a new class of gauge theories. Here, we generalise fractonic theories of $U(1)$ type to what we call $(k,n)$-fractonic Maxwell theory, which employs symmetric order-$n$ tensors of $k$-forms (rank-$k$ antisymmetric tensors) as vector potentials. The generalisation has two key manifestations. First, the objects with mobility restrictions extend beyond simple charges to higher order multipoles (dipoles, quadrupoles, $ldots$) all the way to $n^mathrm{th}$-order multipoles. Second, these fractonic charges themselves are characterized by tensorial densities of $(k-1)$-dimensional extended objects. The source-free sector exhibits `photonic excitations with dispersion $omegasim q^n$.
We consider fermionic systems in which fermion parity is conserved within rigid subsystems, and describe an explicit procedure for gauging such subsystem fermion parity symmetries to obtain bosonic spin Hamiltonians. We show that gauging planar or fr
In three dimensions, gapped phases can support fractonic quasiparticle excitations, which are either completely immobile or can only move within a low-dimensional submanifold, a peculiar topological phenomenon going beyond the conventional framework
Fractonic phases of matter are novel quantum ground states supporting sub-dimensional emergent excitations with mobility restrictions and/or immobile fractons. The ground state degeneracy of such phases is sub-extensive and depends on the geometry of
2+1D multi-component $U(1)$ gauge theories with a Chern-Simons (CS) term provide a simple and complete characterization of 2+1D Abelian topological orders. In this paper, we extend the theory by taking the number of component gauge fields to infinity
We calculate the intensity of the polariton mediated inelastic light scattering in semiconductor microcavities. We treat the exciton-photon coupling nonperturbatively and incorporate lifetime effects in both excitons and photons, and a coupling of th