ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of polariton mediated Raman scattering in microcavities

142   0   0.0 ( 0 )
 نشر من قبل Misael Leon Hilario
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the intensity of the polariton mediated inelastic light scattering in semiconductor microcavities. We treat the exciton-photon coupling nonperturbatively and incorporate lifetime effects in both excitons and photons, and a coupling of the photons to the electron-hole continuum. Taking the matrix elements as fitting parameters, the results are in excellent agreement with measured Raman intensities due to optical phonons resonant with the upper polariton branches in II-VI microcavities with embedded CdTe quantum wells.



قيم البحث

اقرأ أيضاً

We present calculations of the intensity of polariton-mediated inelastic light scattering in semiconductor microcavities within a Greens function framework. In addition to reproducing the strong coupling of light and matter, this method also enables the inclusion of damping mechanisms in a consistent way. Our results show excellent agreement with recent Raman scattering experiments.
We studied the intensity of resonant Raman scattering due to optical phonons in a planar II-VI-type semiconductor microcavity in the regime of strong coupling between light and matter. Two different sets of independent experiments were performed at n ear outgoing resonance with the middle polariton (MP)branch of the cavity. In the first, the Stokes-shifted photons were kept at exact resonance with the MP, varying the photonic or excitonic character of the polariton. In the second, only the incoming light wavelength was varied, and the resonant profile of the inelastic scattered intensity was studied when the system was tuned out of the resonant condition. Taking some matrix elements as free parameters, both independent experiments are quantitatively described by a model which incorporates lifetime effects in both excitons and photons, and the coupling of the cavity photons to the electron-hole continuum. The model is solved using a Greens function approach which treats the exciton-photon coupling nonperturbatively.
Although the parent iron-based pnictides and chalcogenides are itinerant antiferromagnets, the use of local moment picture to understand their magnetic properties is still widespread. We study magnetic Raman scattering from a local moment perspective for various quantum spin models proposed for this new class of superconductors. These models vary greatly in the level of magnetic frustration and show a vastly different two-magnon Raman response. Light scattering by two-magnon excitations thus provides a robust and independent measure of the underlying spin interactions. In accord with other recent experiments, our results indicate that the amount of magnetic frustration in these systems may be small.
Temperature-dependent Raman spectra of TbMnO$_3$ from 5 K to 300 K in the spectral range of 200 to 1525 cm$^{-1}$ show five first-order Raman allowed modes and two high frequency modes. The intensity ratio of the high frequency Raman band to the corr esponding first order Raman mode is nearly constant and high ($sim$ 0.6) at all temperatures, suggesting a orbiton-phonon mixed nature of the high frequency mode. One of the first order phonon modes shows anomalous softening below T$_N$ ($sim$ 46 K), suggesting a strong spin-phonon coupling.
253 - Z. Voros , P. Mai , M. Sassermann 2014
We experimentally analyze Rayleigh scattering in coupled planar microcavities. We show that the correlations of the disorder in the two cavities lead to inter-branch scattering of polaritons, that would otherwise be forbidden by symmetry. These longi tudinal correlations can be inferred from the strength of the inter-branch scattering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا