ﻻ يوجد ملخص باللغة العربية
The haloscope is one of the most sensitive approaches to the QCD axion physics within the region where the axion is considered to be a dark matter candidate. Current experimental sensitivities, which rely on the lowest fundamental TM010 mode of a cylindrical cavity, are limited to relatively low mass regions. Exploiting higher-order resonant modes would be beneficial because it will enable us to extend the search range with no volume loss and higher quality factors. This approach has been discarded mainly because of the significant degradation of form factor, and difficulty with frequency tuning. Here we introduce a new tuning mechanism concept which both enhances the form factor and yields reasonable frequency tunability. A proof of concept demonstration verified that this design is feasible for high mass axion search experiments.
We explore finite size 3D effects in open axion haloscopes such as a dish antenna, a dielectric disk and a minimal dielectric haloscope consisting of a mirror and one dielectric disk. Particularly dielectric haloscopes are a promising new method for
We propose a new strategy to search for dark matter axions using tunable cryogenic plasmas. Unlike current experiments, which repair the mismatch between axion and photon masses by breaking translational invariance (cavity and dielectric haloscopes),
We propose a new strategy to search for dark matter axions in the mass range of 40--400 $mu$eV by introducing dielectric haloscopes, which consist of dielectric disks placed in a magnetic field. The changing dielectric media cause discontinuities in
We present 3D calculations for dielectric haloscopes such as the currently envisioned MADMAX experiment. For ideal systems with perfectly flat, parallel and isotropic dielectric disks of finite diameter, we find that a geometrical form factor reduces
Searches for dark matter axion involve the use of microwave resonant cavities operating in a strong magnetic field. Detector sensitivity is directly related to the cavity quality factor, which is limited, however, by the presence of the external magn