ﻻ يوجد ملخص باللغة العربية
We explore finite size 3D effects in open axion haloscopes such as a dish antenna, a dielectric disk and a minimal dielectric haloscope consisting of a mirror and one dielectric disk. Particularly dielectric haloscopes are a promising new method for detecting dark matter axions in the mass range above $40,mu{rm eV}$. By using two specialized independent approaches - based on finite element methods and Fourier optics - we compute the electromagnetic fields in these settings expected in the presence of an axion dark matter field. This allows us to study diffraction and near field effects for realistically sized experimental setups in contrast to earlier idealized 1D studies with infinitely extended mirrors and disks. We also study axion velocity effects and disk tiling. Diffraction effects are found to become less relevant towards larger axion masses and for the larger disk radii for example aimed at in full size dielectric haloscopes such as MADMAX. The insights of our study not only provide a foundation for a realistic modelling of open axion dark matter search experiments in general, they are in particular also the first results taking into account 3D effects for dielectric haloscopes.
The haloscope is one of the most sensitive approaches to the QCD axion physics within the region where the axion is considered to be a dark matter candidate. Current experimental sensitivities, which rely on the lowest fundamental TM010 mode of a cyl
We propose a new strategy to search for dark matter axions using tunable cryogenic plasmas. Unlike current experiments, which repair the mismatch between axion and photon masses by breaking translational invariance (cavity and dielectric haloscopes),
We propose a new strategy to search for dark matter axions in the mass range of 40--400 $mu$eV by introducing dielectric haloscopes, which consist of dielectric disks placed in a magnetic field. The changing dielectric media cause discontinuities in
We present 3D calculations for dielectric haloscopes such as the currently envisioned MADMAX experiment. For ideal systems with perfectly flat, parallel and isotropic dielectric disks of finite diameter, we find that a geometrical form factor reduces
The sensitivity of experimental searches for axion dark matter coupled to photons is typically proportional to the strength of the applied static magnetic field. We demonstrate how a permeable material can be used to enhance the magnitude of this sta