ﻻ يوجد ملخص باللغة العربية
We report implementation of a resonantly driven singlet-triplet spin qubit in silicon. The qubit is defined by the two-electron anti-parallel spin states and universal quantum control is provided through a resonant drive of the exchange interaction at the qubit frequency. The qubit exhibits long $T_2^*$ exceeding 1 $mu$s that is limited by dephasing due to the $^{29}$Si nuclei rather than charge noise thanks to the symmetric operation and a large micro-magnet Zeeman field gradient. The randomized benchmarking shows 99.6 % single gate fidelity which is the highest reported for singlet-triplet qubits.
We investigate a silicon single-electron transistor (SET) in a metal-oxide-semiconductor (MOS) structure by applying a magnetic field perpendicular to the sample surface. The quantum dot is defined electrostatically in a point contact channel and by
We estimate the triplet-singlet relaxation rate due to spin-orbit coupling assisted by phonon emission in weakly-confined quantum dots. Our results for two and four electrons show that the different triplet-singlet relaxation trends observed in recen
Coherent dressing of a quantum two-level system provides access to a new quantum system with improved properties - a different and easily tuneable level splitting, faster control, and longer coherence times. In our work we investigate the properties
A fault-tolerant quantum processor may be configured using stationary qubits interacting only with their nearest neighbours, but at the cost of significant overheads in physical qubits per logical qubit. Such overheads could be reduced by coherently
In addition to magnetic field and electric charge noise adversely affecting spin qubit operations, performing single-qubit gates on one of multiple coupled singlet-triplet qubits presents a new challenge---crosstalk, which is inevitable (and must be