ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent spin qubit transport in silicon

152   0   0.0 ( 0 )
 نشر من قبل Jun Yoneda
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A fault-tolerant quantum processor may be configured using stationary qubits interacting only with their nearest neighbours, but at the cost of significant overheads in physical qubits per logical qubit. Such overheads could be reduced by coherently transporting qubits across the chip, allowing connectivity beyond immediate neighbours. Here we demonstrate high-fidelity coherent transport of an electron spin qubit between quantum dots in isotopically-enriched silicon. We observe qubit precession in the inter-site tunnelling regime and assess the impact of qubit transport using Ramsey interferometry and quantum state tomography techniques. We report a polarization transfer fidelity of 99.97% and an average coherent transfer fidelity of 99.4%. Our results provide key elements for high-fidelity, on-chip quantum information distribution, as long envisaged, reinforcing the scaling prospects of silicon-based spin qubits.



قيم البحث

اقرأ أيضاً

Magnetic fluctuations caused by the nuclear spins of a host crystal are often the leading source of decoherence for many types of solid-state spin qubit. In group-IV materials, the spin-bearing nuclei are sufficiently rare that it is possible to iden tify and control individual host nuclear spins. This work presents the first experimental detection and manipulation of a single $^{29}$Si nuclear spin. The quantum non-demolition (QND) single-shot readout of the spin is demonstrated, and a Hahn echo measurement reveals a coherence time of $T_2 = 6.3(7)$ ms - in excellent agreement with bulk experiments. Atomistic modeling combined with extracted experimental parameters provides possible lattice sites for the $^{29}$Si atom under investigation. These results demonstrate that single $^{29}$Si nuclear spins could serve as a valuable resource in a silicon spin-based quantum computer.
Coherent dressing of a quantum two-level system provides access to a new quantum system with improved properties - a different and easily tuneable level splitting, faster control, and longer coherence times. In our work we investigate the properties of the dressed, donor-bound electron spin in silicon, and probe its potential for the use as quantum bit in scalable architectures. The two dressed spin-polariton levels constitute a quantum bit that can be coherently driven with an oscillating magnetic field, an oscillating electric field, by frequency modulating the driving field, or by a simple detuning pulse. We measure coherence times of $T_{2rho}^*=2.4$ ms and $T_{2rho}^{rm Hahn}=9$ ms, one order of magnitude longer than those of the undressed qubit. Furthermore, the use of the dressed states enables coherent coupling of the solid-state spins to electric fields and mechanical oscillations.
74 - X. Mi , M. Benito , S. Putz 2017
Electron spins in silicon quantum dots are attractive systems for quantum computing due to their long coherence times and the promise of rapid scaling using semiconductor fabrication techniques. While nearest neighbor exchange coupling of two spins h as been demonstrated, the interaction of spins via microwave frequency photons could enable long distance spin-spin coupling and all-to-all qubit connectivity. Here we demonstrate strong-coupling between a single spin in silicon and a microwave frequency photon with spin-photon coupling rates g_s/(2pi) > 10 MHz. The mechanism enabling coherent spin-photon interactions is based on spin-charge hybridization in the presence of a magnetic field gradient. In addition to spin-photon coupling, we demonstrate coherent control of a single spin in the device and quantum non-demolition spin state readout using cavity photons. These results open a direct path toward entangling single spins using microwave frequency photons.
Initialization, manipulation, and measurement of a three-spin qubit are demonstrated using a few-electron triple quantum dot, where all operations can be driven by tuning the nearest-neighbor exchange interaction. Multiplexed reflectometry, applied t o two nearby charge sensors, allows for qubit readout. Decoherence is found to be consistent with predictions based on gate voltage noise with a uniform power spectrum. The theory of the exchange-only qubit is developed and it is shown that initialization of only two spins suffices for operation. Requirements for full multi-qubit control using only exchange and electrostatic interactions are outlined.
The presence of valley states is a significant obstacle to realizing quantum information technologies in Silicon quantum dots, as leakage into alternate valley states can introduce errors into the computation. We use a perturbative analytical approac h to study the dynamics of exchange-coupled quantum dots with valley degrees of freedom. We show that if the valley splitting is large and electrons are not properly initialized to valley eigenstates, then time evolution of the system will lead to spin-valley entanglement. Spin-valley entanglement will also occur if the valley splitting is small and electrons are not initialized to the same valley state. Additionally, we show that for small valley splitting, spin-valley entanglement does not affect measurement probabilities of two-qubit systems; however, systems with more qubits will be affected. This means that two-qubit gate fidelities measured in two-qubit systems may miss the effects of valley degrees of freedom. Our work shows how the existence of valleys may adversely affect multiqubit fidelities even when the system temperature is very low.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا