ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous thermal expansion in one-dimensional transition-metal cyanides: Behavior of the trimetallic cyanide Cu$_{1/3}$Ag$_{1/3}$Au$_{1/3}$CN

110   0   0.0 ( 0 )
 نشر من قبل Mohamed Zbiri
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The structural dynamics of a 1D mixed-metal cyanide, Cu$_{1/3}$Ag$_{1/3}$Au$_{1/3}$CN, with intriguing thermal properties is explored. All the current known related compounds with straight-chain structures, such as CuCN, AgCN, AuCN and M$_x$M$_{1-x}$CN (M, M = Cu, Ag, Au), exhibit 1D negative thermal expansion (NTE) along the chains and positive thermal expansion (PTE) perpendicular to them. Cu$_{1/3}$Ag$_{1/3}$Au$_{1/3}$CN exhibits similar PTE perpendicular to the chains, however PTE, rather than NTE, is also observed along the chains. In order to understand the origin of this unexpected behavior, inelastic neutron scattering (INS) measurements were carried out, underpinned by DFT calculations. Synchrotron-based PDF analysis and 13C SSNMR measurements were also performed to build an input structural model for the lattice dynamical study. The results indicate that transverse motions of the metal ions are responsible for the PTE perpendicular to the chains, as is the case for the related group 11 cyanides. However NTE along the chain due to the tension effect of these transverse motions is not observed. For this system, DFT-based phonon calculations predict small PTE along the chain due to low-energy chain-slipping modes induced by a bond-rotation effect on the weak metallophilic bonds. However the observed PTE is greater than that predicted with the straight-chain model. Small bends in the chain to accommodate truly co-planar metals provide an alternative explanation for thermal behavior. These would mitigate the tension effect induced by the transverse motions of the metals and, as temperature increases and the chains move further apart, a straightening could occur resulting in the observed PTE. This hypothesis is further supported by unusual evolution in the phonon spectra, which suggest small changes in local symmetry with temperature.



قيم البحث

اقرأ أيضاً

In this work we report the opening of an energy gap at the filling factor $ u=3+1/3$, firmly establishing the ground state as a fractional quantum Hall state. This and other odd-denominator states unexpectedly break particle-hole symmetry. Specifical ly, we find that the relative magnitudes of the energy gaps of the $ u=3+1/3$ and $3+1/5$ states from the upper spin branch are reversed when compared to the $ u=2+1/3$ and $2+1/5$ counterpart states in the lower spin branch. Our findings raise the possibility that the former states have a non-conventional origin.
We investigate the low temperature behaviour of Pb(In$_{1/2}$Nb$_{1/2}$)O$_{3}$-Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$-PbTiO$_{3}$ using dielectric permittivity measurements. We compare single crystal plates measured in the [001] and [111] directions with a polycrystalline ceramic of the same composition. Poled crystals behave very differently to unpoled crystals, whereas the dielectric spectrum of the ceramic changes very little on poling. A large, frequency dependent dielectric relaxation seen in the poled [001] crystal around 100 K is much less prominent in the [111] crystal, and doesnt occur in the ceramic. Preparation conditions and the microstructure of the material play a role in the low temperature dynamics of relaxor-ferroelectric crystals.
Layered transition metal dichalcogenides (TMDCs) host a plethora of interesting physical phenomena ranging from charge order to superconductivity. By introducing magnetic ions into 2H-NbS$_2$, the material forms a family of magnetic intercalated TMDC s T$_x$NbS$_2$ (T = 3d transition metal). Recently, Fe$_{1/3+delta}$NbS$_2$ has been found to possess intriguing resistance switching and magnetic memory effects coupled to the N{e}el temperature of T$_N sim 45$ K [1,2]. We present comprehensive single crystal neutron diffraction measurements on under-intercalated ($delta sim -0.01$), stoichiometric, and over-intercalated ($delta sim 0.01$) samples. Magnetic defects are usually considered to suppress magnetic correlations and, concomitantly, transition temperatures. Instead, we observe highly tunable magnetic long-ranged states as the Fe concentration is varied from under-intercalated to over-intercalated, that is from Fe vacancies to Fe interstitials. The under- and over- intercalated samples reveal distinct antiferromagnetic stripe and zig-zag orders, associated with wave vectors $k_1$ = (0.5, 0, 0) and $k_2$ = (0.25, 0.5, 0), respectively. The stoichiometric sample shows two successive magnetic phase transitions for these two wave vectors with an unusual rise-and-fall feature in the intensities connected to $k_1$. We ascribe this sensitive tunability to the competing next nearest neighbor exchange interactions and the oscillatory nature of the Ruderman-Kittel-Kasuya-Yosida (RKKY) mechanism. We discuss experimental observations that relate to the observed intriguing switching resistance behaviors. Our discovery of a magnetic defect tuning of the magnetic structure in bulk crystals Fe$_{1/3+delta}$NbS$_2$ provides a possible new avenue to implement controllable antiferromagnetic spintronic devices.
62 - P. V. Dong , D. T. Si 2015
We show that the mixing effect of the neutral gauge bosons in the 3-3-1-1 model comes from two sources. The first one is due to the 3-3-1-1 gauge symmetry breaking as usual, whereas the second one results from the kinetic mixing between the gauge bos ons of U(1)_X and U(1)_N groups, which are used to determine the electric charge and baryon minus lepton numbers, respectively. Such mixings modify the rho-parameter and the known couplings of Z with fermions. The constraints that arise from flavor-changing neutral currents due to the gauge boson mixings and non-universal fermion generations are also given.
The electroweak phase transition (EWPT) is considered in the framework of 3-3-1-1 model for Dark Matter. The phase structure within three or two periods is approximated for the theory with many vacuum expectation values (VEVs) at TeV and Electroweak scales. In the mentioned model, there are two pictures. The first picture containing two periods of EWPT, has a transition $SU(3) rightarrow SU(2)$ at 6 TeV scale and another is $SU(2) rightarrow U(1)$ transition which is the like-standard model EWPT. The second picture is an EWPT structure containing three periods, in which two first periods are similar to those of the first picture and another one is the symmetry breaking process of $U(1)_N$ subgroup. Our study leads to the conclusion that EWPTs are the first order phase transitions when new bosons are triggers and their masses are within range of some TeVs. Especially, in two pictures, the maximum strength of the $SU(2) rightarrow U(1)$ phase transition is equal to 2.12 so this EWPT is not strong. Moreover, neutral fermions, which are candidates for Dark Matter and obey the Fermi-Dirac distribution, can be a negative trigger for EWPT. However, they do not make lose the first-order EWPT at TeV scale. Furthermore, in order to be the strong first-order EWPT at TeV scale, the symmetry breaking processes must produce more bosons than fermions or the mass of bosons must be much larger than that of fermions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا