ﻻ يوجد ملخص باللغة العربية
We show that the mixing effect of the neutral gauge bosons in the 3-3-1-1 model comes from two sources. The first one is due to the 3-3-1-1 gauge symmetry breaking as usual, whereas the second one results from the kinetic mixing between the gauge bosons of U(1)_X and U(1)_N groups, which are used to determine the electric charge and baryon minus lepton numbers, respectively. Such mixings modify the rho-parameter and the known couplings of Z with fermions. The constraints that arise from flavor-changing neutral currents due to the gauge boson mixings and non-universal fermion generations are also given.
In the minimal 3-3-1 model charged leptons come in a non-diagonal basis. Moreover the Yukawa interactions of the model lead to a non-hermitian charged lepton mass matrix. In other words, the minimal 3-3-1 model presents a very complex lepton mixing.
A simple extension of the Standard Model (SM), based on the gauge group $SU(3)_Cotimes SU(3)_Lotimes U(1)_Y$ with $Y$ being the hypercharge, is considered. We show that, by imposing an approximate global $SU(2)_Ltimes SU(2)_R$ custodial symmetry at t
We present the features of the fully flipped 3-3-1-1 model and show that this model leads to dark matter candidates naturally. We study two dark matter scenarios corresponding to the triplet fermion and singlet scalar candidates, and we determine the
We show that the economical 3-3-1 model poses a very high new physics scale of the order of 1000~TeV due to the constraint on the flavor-changing neutral current. The implications of the model for neutrino masses, inflation, leptogenesis, and superhe
We show that in the minimal 3-3-1 model the flavor changing neutral currents (FCNCs) do not impose necessarily strong constraints on the mass of the $Z^prime$ of the model if we also consider the neutral scalar contributions to such processes, like t