ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of a parabolic-ODE competition system in heterogeneous environments

80   0   0.0 ( 0 )
 نشر من قبل Rachidi Bolaji Salako
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This work is concerned with the large time behavior of the solutions of a parabolic-ODE hybrid system, modeling the competition of two populations which are identical except their movement behaviors: one species moves by random dispersal while the other does not diffuse. We show that the non-diffusing population will always drive the diffusing one to extinction in environments with sinks. In contract, the non-diffusing and diffusing populations can coexist in environments without sinks.



قيم البحث

اقرأ أيضاً

63 - Emeric Bouin , Yuan Lou 2020
We consider a system of two competing populations in two-dimensional heterogeneous environments. The populations are assumed to move horizontally and vertically with different probabilities, but are otherwise identical. We regard these probabilities as dispersal strategies. We show that the evolutionarily stable strategies are to move in one direction only. Our results predict that it is more beneficial for the species to choose the direction with smaller variation in the resource distribution. This finding seems to be in agreement with the classical results of Hasting [15] and Dockery et al. [11] for the evolution of slow dispersal, i.e. random diffusion is selected against in spatially heterogeneous environments. These conclusions also suggest that broader dispersal strategies should be considered regarding the movement in heterogeneous habitats.
624 - Xiaojie Hou , Yi Li 2013
This paper studies the traveling wave solutions to a three species competition cooperation system. The existence of the traveling waves is investigated via monotone iteration method. The upper and lower solutions come from either the waves of KPP equ ation or those of certain Lotka Volterra system. We also derive the asymptotics and uniqueness of the wave solutions. The results are then applied to a Lotka Volterra system with spatially averaged and temporally delayed competition.
141 - King-Yeung Lam , Xiao Yu 2021
We study the asymptotic spreading of Kolmogorov-Petrovsky-Piskunov (KPP) fronts in heterogeneous shifting habitats, with any number of shifting speeds, by further developing the method based on the theory of viscosity solutions of Hamilton-Jacobi equ ations. Our framework addresses both reaction-diffusion equation and integro-differential equations with a distributed time-delay. The latter leads to a class of limiting equations of Hamilton-Jacobi-type depending on the variable $x/t$ and in which the time and space derivatives are coupled together. We will first establish uniqueness results for these Hamilton-Jacobi equations using elementary arguments, and then characterize the spreading speed in terms of a reduced equation on a one-dimensional domain in the variable $s=x/t$. In terms of the standard Fisher-KPP equation, our results leads to a new class of asymptotically homogeneous environments which share the same spreading speed with the corresponding homogeneous environments.
In this paper we study the following parabolic system begin{equation*} Delta u -partial_t u =|u|^{q-1}u,chi_{{ |u|>0 }}, qquad u = (u^1, cdots , u^m) , end{equation*} with free boundary $partial {|u | >0}$. For $0leq q<1$, we prove optimal growth rate for solutions $u $ to the above system near free boundary points, and show that in a uniform neighbourhood of any a priori well-behaved free boundary point the free boundary is $C^{1, alpha}$ in space directions and half-Lipschitz in the time direction.
This paper includes a proof of well-posedness of an initial-boundary value problem involving a system of degenerate non-local parabolic PDE which naturally arises in the study of derivative pricing in a generalized market model. In a semi-Markov modu lated GBM model the locally risk minimizing price function satisfies a special case of this problem. We study the well-posedness of the problem via a Volterra integral equation of second kind. A probabilistic approach, in particular the method of conditioning on stopping times is used for showing uniqueness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا