ﻻ يوجد ملخص باللغة العربية
We use state-of-the-art density matrix renormalization group calculations in the canonical ensemble to determine the phase diagram of the dipolar Bose-Hubbard model on a finite cylinder. We consider several observables that are accessible in typical optical lattice setups and assess how well these quantities perform as order parameters. We find that, especially for small systems, the occupation imbalance is less susceptible to boundary effects than the structure factor in uncovering the presence of a periodic density modulation. By analysing the non-local correlations, we find that the appearance of supersolid order is very sensitive to boundary effects, which may render it difficult to observe in quantum gas lattice experiments with a few tens of particles. Finally, we show how density measurements readily obtainable on a quantum gas microscope allow distinguishing between superfluid and solid phases using unsupervised machine-learning techniques.
For a Bose-Hubbard dimer, we study quenches of the site energy imbalance, taking a highly asymmetric Hamiltonian to a fully symmetric one. The ramp is carried out over a finite time that interpolates between the instantaneous and adiabatic limits. We
We compute the ground state phase diagram of the 2d Bose-Hubbard model with anisotropic hopping using quantum Monte Carlo simulations, connecting the 1d to the 2d system. We find that the tip of the lobe lies on a curve controlled by the 1d limit ove
We develop a finite temperature Hartree theory for the trapped dipolar Bose gas. We use this theory to study thermal effects on the mechanical stability of the system and density oscillating condensate states. We present results for the stability pha
Topological states of matter, such as fractional quantum Hall states, are an active field of research due to their exotic excitations. In particular, ultracold atoms in optical lattices provide a highly controllable and adaptable platform to study su
An Anderson impurity in a Hubbard model on chains with finite length is studied using the density-matrix renormalization group (DMRG) technique. In the first place, we analyzed how the reduction of electron density from half-filling to quarter-fillin