ﻻ يوجد ملخص باللغة العربية
We present a variant of a universality result of Rodl [On universality of graphs with uniformly distributed edges, Discrete Math. 59 (1986), no. 1-2, 125-134] for sparse, $3$-uniform hypergraphs contained in strongly jumbled hypergraphs. One of the ingredients of our proof is a counting lemma for fixed hypergraphs in sparse ``pseudorandom uniform hypergraphs, which is proved in the companion paper [Counting results for sparse pseudorandom hypergraphs I].
We establish a so-called counting lemma that allows embeddings of certain linear uniform hypergraphs into sparse pseudorandom hypergraphs, generalizing a result for graphs [Embedding graphs with bounded degree in sparse pseudorandom graphs, Israel J.
We consider extremal problems for subgraphs of pseudorandom graphs. For graphs $F$ and $Gamma$ the generalized Turan density $pi_F(Gamma)$ denotes the density of a maximum subgraph of $Gamma$, which contains no copy of~$F$. Extending classical Turan
We prove that for any $tge 3$ there exist constants $c>0$ and $n_0$ such that any $d$-regular $n$-vertex graph $G$ with $tmid ngeq n_0$ and second largest eigenvalue in absolute value $lambda$ satisfying $lambdale c d^{t}/n^{t-1}$ contains a $K_t$-fa
Let $F$ be a graph. A hypergraph is called Berge $F$ if it can be obtained by replacing each edge in $F$ by a hyperedge containing it. Given a family of graphs $mathcal{F}$, we say that a hypergraph $H$ is Berge $mathcal{F}$-free if for every $F in m
A tight Hamilton cycle in a $k$-uniform hypergraph ($k$-graph) $G$ is a cyclic ordering of the vertices of $G$ such that every set of $k$ consecutive vertices in the ordering forms an edge. R{o}dl, Ruci{n}ski, and Szemer{e}di proved that for $kgeq 3$