ﻻ يوجد ملخص باللغة العربية
The optical beam splitter is a widely-used device in photonics-based quantum information processing. Specifically, linear optical networks demand large numbers of beam splitters for unitary matrix realization. This requirement comes from the beam splitter property that a photon cannot go back out of the input ports, which we call directionally-biased. Because of this property, higher dimensional information processing tasks suffer from rapid device resource growth when beam splitters are used in a feed-forward manner. Directionally-unbiased linear-optical devices have been introduced recently to eliminate the directional bias, greatly reducing the numbers of required beam splitters when implementing complicated tasks. Analysis of some originally directional optical devices and basic principles of their conversion into directionally-unbiased systems form the base of this paper. Photonic quantum walk implementations are investigated as a main application of the use of directionally-unbiased systems. Several quantum walk procedures executed on graph networks constructed using directionally-unbiased nodes are discussed. A significant savings in hardware and other required resources when compared with traditional directionally-biased beam-splitter-based optical networks is demonstrated.
Recently, a generalization of the standard optical multiport was proposed [Phys. Rev. A 93, 043845 (2016)]. These directionally unbiased multiports allow photons to reverse direction and exit backwards from the input port, providing a realistic linea
It is shown that quantum walks on one-dimensional arrays of special linear-optical units allow the simulation of discrete-time Hamiltonian systems with distinct topological phases. In particular, a slightly modified version of the Su-Schrieffer-Heege
All existing optical quantum walk approaches are based on the use of beamsplitters and multiple paths to explore the multitude of unitary transformations of quantum amplitudes in a Hilbert space. The beamsplitter is naturally a directionally biased d
The concept of directionally unbiased optical multiports is introduced, in which photons may reflect back out the input direction. A linear-optical implementation is described, and the simplest three-port version studied. Symmetry arguments demonstra
We make and generalize the observation that summing of probability amplitudes of a discrete-time quantum walk over partitions of the walking graph consistent with the step operator results in a unitary evolution on the reduced graph which is also a q