ﻻ يوجد ملخص باللغة العربية
It is shown that quantum walks on one-dimensional arrays of special linear-optical units allow the simulation of discrete-time Hamiltonian systems with distinct topological phases. In particular, a slightly modified version of the Su-Schrieffer-Heeger (SSH) system can be simulated, which exhibits states of nonzero winding number and has topologically protected boundary states. In the large-system limit this approach uses quadratically fewer resources to carry out quantum simulations than previous linear-optical approaches and can be readily generalized to higher-dimensional systems. The basic optical units that implement this simulation consist of combinations of optical multiports that allow photons to reverse direction.
Recently, a generalization of the standard optical multiport was proposed [Phys. Rev. A 93, 043845 (2016)]. These directionally unbiased multiports allow photons to reverse direction and exit backwards from the input port, providing a realistic linea
The concept of directionally unbiased optical multiports is introduced, in which photons may reflect back out the input direction. A linear-optical implementation is described, and the simplest three-port version studied. Symmetry arguments demonstra
All existing optical quantum walk approaches are based on the use of beamsplitters and multiple paths to explore the multitude of unitary transformations of quantum amplitudes in a Hilbert space. The beamsplitter is naturally a directionally biased d
Topological photonics has been introduced as a powerful platform for integrated optics, since it can deal with robust light transport, and be further extended to the quantum world. Strikingly, valley-contrasting physics in topological photonic struct
The optical beam splitter is a widely-used device in photonics-based quantum information processing. Specifically, linear optical networks demand large numbers of beam splitters for unitary matrix realization. This requirement comes from the beam spl