ﻻ يوجد ملخص باللغة العربية
We calculate the effect of a static electric field on the superconductive critical temperature of Indium thin films in the framework of proximity effect Eliashberg theory, in order to explain 60 years old experimental data. Since in the theoretical model we employ all quantities of interest can be computed ab-initio (i.e. electronic densities of states, Fermi energy shifts and Eliashberg spectral functions), the only free parameter is in general the thickness of the surface layer where the electric field acts. However, in the weak electrostatic field limit Thomas-Fermi approximation is still valid and therefore no free parameters are left, as this perturbed layer is known to have a thickness of the order of the Thomas-Fermi screening length. We show that the theoretical model can reproduce experimental data, even when the magnitude of the induced charge densities are so small to be usually neglected.
We report large enhancement of upper critical field Hc2 observed in superconducting Sr2RuO4 thin films. Through dimensional crossover approaching two dimensions, Hc2 except the in-plane field direction is dramatically enhanced compared to bulks, foll
The upper critical field in type II superconductors is limited by the Pauli paramagnetic limit. In superconductors with strong Rashba spin-orbit coupling this limit can be overcome by forming a helical state. Here we quantitatively study the magnetic
In this paper, we analyze the upper critical field of four MgB2 thin films, with different resistivity (between 5 to 50 mWcm) and critical temperature (between 29.5 to 38.8 K), measured up to 28 Tesla. In the perpendicular direction the critical fiel
The effects of neutron irradiation on normal state and superconducting properties of epitaxial magnesium diboride thin films are studied up to fluences of 1020 cm-2. All the properties of the films change systematically upon irradiation. Critical tem
The angular-dependent critical current density, Jc(theta), and the upper critical field, Hc2(theta), of epitaxial Ba(Fe1-xCox)2As2 thin films have been investigated. No Jc(theta) peaks for H || c were observed regardless of temperatures and magnetic