ترغب بنشر مسار تعليمي؟ اضغط هنا

First order phase transitions and the thermodynamic limit

59   0   0.0 ( 0 )
 نشر من قبل Tobias Frohoff-H\\\"ulsmann
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider simple mean field continuum models for first order liquid-liquid demixing and solid-liquid phase transitions and show how the Maxwell construction at phase coexistence emerges on going from finite-size closed systems to the thermodynamic limit. The theories considered are the Cahn-Hilliard model of phase separation, which is also a model for the liquid-gas transition, and the phase field crystal model of the solid-liquid transition. Our results show that states comprising the Maxwell line depend strongly on the mean density with spatially localized structures playing a key role in the approach to the thermodynamic limit.



قيم البحث

اقرأ أيضاً

We consider an off-lattice liquid crystal pair potential in strictly two dimensions. The potential is purely repulsive and short-ranged. Nevertheless, by means of a single parameter in the potential, the system is shown to undergo a first-order phase transition. The transition is studied using mean-field density functional theory, and shown to be of the isotropic-to-nematic kind. In addition, the theory predicts a large density gap between the two coexisting phases. The first-order nature of the transition is confirmed using computer simulation and finite-size scaling. Also presented is an analysis of the interface between the coexisting domains, including estimates of the line tension, as well as an investigation of anchoring effects.
We study the response to perturbations in the thermodynamic limit of a network of coupled identical agents undergoing a stochastic evolution which, in general, describes non-equilibrium conditions. All systems are nudged towards the common centre of mass. We derive Kramers-Kronig relations and sum rules for the linear susceptibilities obtained through mean field Fokker-Planck equations and then propose corrections relevant for the macroscopic case, which incorporates in a self-consistent way the effect of the mutual interaction between the systems. Such an interaction creates a memory effect. We are able to derive conditions determining the occurrence of phase transitions specifically due to system-to-system interactions. Such phase transitions exist in the thermodynamic limit and are associated with the divergence of the linear response but are not accompanied by the divergence in the integrated autocorrelation time for a suitably defined observable. We clarify that such endogenous phase transitions are fundamentally different from other pathologies in the linear response that can be framed in the context of critical transitions. Finally, we show how our results can elucidate the properties of the Desai-Zwanzig model and of the Bonilla-Casado-Morillo model, which feature paradigmatic equilibrium and non-equilibrium phase transitions, respectively.
We construct a novel approach, based on thermodynamic geometry, to characterize first-order phase transitions from a microscopic perspective, through the scalar curvature in the equilibrium thermodynamic state space. Our method resolves key theoretic al issues in macroscopic thermodynamic constructs, and furthermore characterizes the Widom line through the maxima of the correlation length, which is captured by the thermodynamic scalar curvature. As an illustration of our method, we use it in conjunction with the mean field Van der Waals equation of state to predict the coexistence curve and the Widom line. Where closely applicable, it provides excellent agreement with experimental data. The universality of our method is indicated by direct calculations from the NIST database.
A framework is presented for carrying out simulations of equilibrium systems in the microcanonical ensemble using annealing in an energy ceiling. The framework encompasses an equilibrium version of simulated annealing, population annealing and hybrid algorithms that interpolate between these extremes. These equilibrium, microcanonical annealing algorithms are applied to the thermal first-order transition in the 20-state, two-dimensional Potts model. All of these algorithms are observed to perform well at the first-order transition though for the system sizes studied here, equilibrium simulated annealing is most efficient.
We conduct a rigorous investigation into the thermodynamic instability of ideal Bose gas confined in a cubic box, without assuming thermodynamic limit nor continuous approximation. Based on the exact expression of canonical partition function, we per form numerical computations up to the number of particles one million. We report that if the number of particles is equal to or greater than a certain critical value, which turns out to be 7616, the ideal Bose gas subject to Dirichlet boundary condition reveals a thermodynamic instability. Accordingly we demonstrate - for the first time - that, a system consisting of finite number of particles can exhibit a discontinuous phase transition featuring a genuine mathematical singularity, provided we keep not volume but pressure constant. The specific number, 7616 can be regarded as a characteristic number of cube that is the geometric shape of the box.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا