ترغب بنشر مسار تعليمي؟ اضغط هنا

Statistics of rigid fibers in strongly sheared turbulence

82   0   0.0 ( 0 )
 نشر من قبل Varghese Mathai
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Practically all flows are turbulent in nature and contain some kind of irregularly-shaped particles, e.g. dirt, pollen, or life forms such as bacteria or insects. The effect of the particles on such flows and vice-versa are highly non-trivial and are not completely understood, particularly when the particles are finite-sized. Here we report an experimental study of millimetric fibers in a strongly sheared turbulent flow. We find that the fibers show a preferred orientation of $-0.38pi pm 0.05pi$ ($-68 pm 9^circ$) with respect to the mean flow direction in high-Reynolds number Taylor-Couette turbulence, for all studied Reynolds numbers, fiber concentrations, and locations. Despite the finite-size of the anisotropic particles, we can explain the preferential alignment by using Jeffereys equation, which provides evidence of the benefit of a simplified point-particle approach. Furthermore, the fiber angular velocity is strongly intermittent, again indicative of point-particle-like behavior in turbulence. Thus large anisotropic particles still can retain signatures of the local flow despite classical spatial and temporal filtering effects.



قيم البحث

اقرأ أيضاً

The effect of a network of fixed rigid fibers on fluid flow is investigated by means of three-dimensional direct numerical simulations using an immersed boundary method for the fluid-structure coupling. Different flows are considered (i.e., cellular, parallel and homogeneous isotropic turbulent flow) in order to identify the modification of the classic energy budget occurring within canopies or fibrous media, as well as particle-laden flows. First, we investigate the stabilizing effect of the network on the Arnold-Beltrami-Childress (ABC) cellular flow, showing that, the steady configuration obtained for a sufficiently large fiber concentration mimics the single-phase stable solution at a lower Reynolds number. Focusing on the large-scale dynamics, the effect of the drag exerted by the network on the flow can be effectively modelled by means of a Darcys friction term. For the latter, we propose a phenomenological expression that is corroborated when extending our analysis to the Kolmogorov parallel flow and homogeneous isotropic turbulence. Furthermore, we examine the overall energy distribution across the various scales of motion, highlighting the presence of small-scale activity with a peak in the energy spectra occurring at the wavenumber corresponding to the network spacing.
237 - N.E. Sujovolsky , P.D. Mininni , 2017
The large-scale structures in the ocean and the atmosphere are in geostrophic balance, and a conduit must be found to channel the energy to the small scales where it can be dissipated. In turbulence this takes the form of an energy cascade, whereas o ne possible mechanism in a balanced flow at large scales is through the formation of fronts, a common occurrence in geophysical dynamics. We show in this paper that an iconic configuration in laboratory and numerical experiments for the study of turbulence, that of the Taylor-Green or von Karman swirling flow, can be suitably adapted to the case of fluids with large aspect ratios, leading to the creation of an imposed large-scale vertical shear. To this effect we use direct numerical simulations of the Boussinesq equations without net rotation and with no small-scale modeling, and with this idealized Taylor-Green set-up. Various grid spacings are used, up to $2048^2times 256$ spatial points. The grids are always isotropic, with box aspect ratios of either $1:4$ or $1:8$. We find that when shear and stratification are comparable, the imposed shear layer resulting from the forcing leads to the formation of multiple fronts and filaments which destabilize and further evolve into a turbulent flow in the bulk, with a sizable amount of dissipation and mixing, and with a cycle of front creation, instability, and development of turbulence. The results depend on the vertical length scales for shear and for stratification, with stronger large-scale gradients being generated when the two length scales are comparable.
Simulations of strongly stratified turbulence often exhibit coherent large-scale structures called vertically sheared horizontal flows (VSHFs). VSHFs emerge in both two-dimensional (2D) and three-dimensional (3D) stratified turbulence with similar ve rtical structure. The mechanism responsible for VSHF formation is not fully understood. In this work, the formation and equilibration of VSHFs in a 2D Boussinesq model of stratified turbulence is studied using statistical state dynamics (SSD). In SSD, equations of motion are expressed directly in the statistical variables of the turbulent state. Restriction to 2D turbulence makes available an analytically and computationally attractive implementation of SSD referred to as S3T, in which the SSD is expressed by coupling the equation for the horizontal mean structure with the equation for the ensemble mean perturbation covariance. This second order SSD produces accurate statistics, through second order, when compared with fully nonlinear simulations. In particular, S3T captures the spontaneous emergence of the VSHF and associated density layers seen in simulations of turbulence maintained by homogeneous large-scale stochastic excitation. An advantage of the S3T system is that the VSHF formation mechanism, which is wave-mean flow interaction between the emergent VSHF and the stochastically excited large-scale gravity waves, is analytically understood in the S3T system. Comparison with fully nonlinear simulations verifies that S3T solutions accurately predict the scale selection, dependence on stochastic excitation strength, and nonlinear equilibrium structure of the VSHF. These results facilitate relating VSHF theory and geophysical examples of turbulent jets such as the oceans equatorial deep jets.
183 - Wouter Bos 2014
The angle between subsequent particle displacement increments is evaluated as a function of the timelag in isotropic turbulence. It is shown that the evolution of this angle contains two well-defined power-laws, reflecting the multi-scale dynamics of high-Reynolds number turbulence. The proba-bility density function of the directional change is shown to be self-similar and well approximated by an analytically derived model assuming Gaussianity and independence of the velocity and the Lagrangian acceleration.
149 - A. Gopinath 2005
A weakly deformable droplet impinging on a rigid surface rebounds if the surface is intrinsically hydrophobic or if the gas film trapped underneath the droplet is able to keep the interfaces from touching. A simple, physically motivated model inspire d by analysis of droplets colliding with deformable interfaces is proposed in order to investigate the dynamics of the rebound process and the effects of gravity. The analysis yields estimates of the bounce time that are in very good quantitative agreement with recent experimental data (Okumura et. al., (2003)) and provides significant improvement over simple scaling results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا