ﻻ يوجد ملخص باللغة العربية
Simulations of strongly stratified turbulence often exhibit coherent large-scale structures called vertically sheared horizontal flows (VSHFs). VSHFs emerge in both two-dimensional (2D) and three-dimensional (3D) stratified turbulence with similar vertical structure. The mechanism responsible for VSHF formation is not fully understood. In this work, the formation and equilibration of VSHFs in a 2D Boussinesq model of stratified turbulence is studied using statistical state dynamics (SSD). In SSD, equations of motion are expressed directly in the statistical variables of the turbulent state. Restriction to 2D turbulence makes available an analytically and computationally attractive implementation of SSD referred to as S3T, in which the SSD is expressed by coupling the equation for the horizontal mean structure with the equation for the ensemble mean perturbation covariance. This second order SSD produces accurate statistics, through second order, when compared with fully nonlinear simulations. In particular, S3T captures the spontaneous emergence of the VSHF and associated density layers seen in simulations of turbulence maintained by homogeneous large-scale stochastic excitation. An advantage of the S3T system is that the VSHF formation mechanism, which is wave-mean flow interaction between the emergent VSHF and the stochastically excited large-scale gravity waves, is analytically understood in the S3T system. Comparison with fully nonlinear simulations verifies that S3T solutions accurately predict the scale selection, dependence on stochastic excitation strength, and nonlinear equilibrium structure of the VSHF. These results facilitate relating VSHF theory and geophysical examples of turbulent jets such as the oceans equatorial deep jets.
The large-scale structures in the ocean and the atmosphere are in geostrophic balance, and a conduit must be found to channel the energy to the small scales where it can be dissipated. In turbulence this takes the form of an energy cascade, whereas o
Numerical simulations are made for forced turbulence at a sequence of increasing values of Reynolds number, R, keeping fixed a strongly stable, volume-mean density stratification. At smaller values of R, the turbulent velocity is mainly horizontal, a
Kraichnan seminal ideas on inverse cascades yielded new tools to study common phenomena in geophysical turbulent flows. In the atmosphere and the oceans, rotation and stratification result in a flow that can be approximated as two-dimensional at very
To investigate the formation mechanism of energy spectra of internal waves in the oceans, direct numerical simulations are performed. The simulations are based on the reduced dynamical equations of rotating stratified turbulence. In the reduced dynam
We numerically investigate the spatial and temporal statistical properties of a dilute polymer solution in the elastic turbulence regime, i.e., in the chaotic flow state occurring at vanishing Reynolds and high Weissenberg numbers. We aim at elucidat