ﻻ يوجد ملخص باللغة العربية
For current and future Internet of Things (IoT) networks, mobile edge-cloud computation offloading (MECCO) has been regarded as a promising means to support delay-sensitive IoT applications. However, offloading mobile tasks to the cloud is vulnerable to security issues due to malicious mobile devices (MDs). How to implement offloading to alleviate computation burdens at MDs while guaranteeing high security in mobile edge cloud is a challenging problem. In this paper, we investigate simultaneously the security and computation offloading problems in a multi-user MECCO system with blockchain. First, to improve the offloading security, we propose a trustworthy access control using blockchain, which can protect cloud resources against illegal offloading behaviours. Then, to tackle the computation management of authorized MDs, we formulate a computation offloading problem by jointly optimizing the offloading decisions, the allocation of computing resource and radio bandwidth, and smart contract usage. This optimization problem aims to minimize the long-term system costs of latency, energy consumption and smart contract fee among all MDs. To solve the proposed offloading problem, we develop an advanced deep reinforcement learning algorithm using a double-dueling Q-network. Evaluation results from real experiments and numerical simulations demonstrate the significant advantages of our scheme over existing approaches.
In remote regions (e.g., mountain and desert), cellular networks are usually sparsely deployed or unavailable. With the appearance of new applications (e.g., industrial automation and environment monitoring) in remote regions, resource-constrained te
With the mass deployment of computing-intensive applications and delay-sensitive applications on end devices, only adequate computing resources can meet differentiated services delay requirements. By offloading tasks to cloud servers or edge servers,
Last year, IEEE 802.11 Extremely High Throughput Study Group (EHT Study Group) was established to initiate discussions on new IEEE 802.11 features. Coordinated control methods of the access points (APs) in the wireless local area networks (WLANs) are
This paper investigates the application of deep deterministic policy gradient (DDPG) to intelligent reflecting surface (IRS) based unmanned aerial vehicles (UAV) assisted non-orthogonal multiple access (NOMA) downlink networks. The deployment of the
In delay-sensitive industrial internet of things (IIoT) applications, the age of information (AoI) is employed to characterize the freshness of information. Meanwhile, the emerging network function virtualization provides flexibility and agility for