ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Reinforcement Learning-Based Channel Allocation for Wireless LANs with Graph Convolutional Networks

147   0   0.0 ( 0 )
 نشر من قبل Shotaro Kamiya
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Last year, IEEE 802.11 Extremely High Throughput Study Group (EHT Study Group) was established to initiate discussions on new IEEE 802.11 features. Coordinated control methods of the access points (APs) in the wireless local area networks (WLANs) are discussed in EHT Study Group. The present study proposes a deep reinforcement learning-based channel allocation scheme using graph convolutional networks (GCNs). As a deep reinforcement learning method, we use a well-known method double deep Q-network. In densely deployed WLANs, the number of the available topologies of APs is extremely high, and thus we extract the features of the topological structures based on GCNs. We apply GCNs to a contention graph where APs within their carrier sensing ranges are connected to extract the features of carrier sensing relationships. Additionally, to improve the learning speed especially in an early stage of learning, we employ a game theory-based method to collect the training data independently of the neural network model. The simulation results indicate that the proposed method can appropriately control the channels when compared to extant methods.



قيم البحث

اقرأ أيضاً

This paper presents channel-aware adversarial attacks against deep learning-based wireless signal classifiers. There is a transmitter that transmits signals with different modulation types. A deep neural network is used at each receiver to classify i ts over-the-air received signals to modulation types. In the meantime, an adversary transmits an adversarial perturbation (subject to a power budget) to fool receivers into making errors in classifying signals that are received as superpositions of transmitted signals and adversarial perturbations. First, these evasion attacks are shown to fail when channels are not considered in designing adversarial perturbations. Then, realistic attacks are presented by considering channel effects from the adversary to each receiver. After showing that a channel-aware attack is selective (i.e., it affects only the receiver whose channel is considered in the perturbation design), a broadcast adversarial attack is presented by crafting a common adversarial perturbation to simultaneously fool classifiers at different receivers. The major vulnerability of modulation classifiers to over-the-air adversarial attacks is shown by accounting for different levels of information available about the channel, the transmitter input, and the classifier model. Finally, a certified defense based on randomized smoothing that augments training data with noise is introduced to make the modulation classifier robust to adversarial perturbations.
In this article, we study a Radio Resource Allocation (RRA) that was formulated as a non-convex optimization problem whose main aim is to maximize the spectral efficiency subject to satisfaction guarantees in multiservice wireless systems. This probl em has already been previously investigated in the literature and efficient heuristics have been proposed. However, in order to assess the performance of Machine Learning (ML) algorithms when solving optimization problems in the context of RRA, we revisit that problem and propose a solution based on a Reinforcement Learning (RL) framework. Specifically, a distributed optimization method based on multi-agent deep RL is developed, where each agent makes its decisions to find a policy by interacting with the local environment, until reaching convergence. Thus, this article focuses on an application of RL and our main proposal consists in a new deep RL based approach to jointly deal with RRA, satisfaction guarantees and Quality of Service (QoS) constraints in multiservice celular networks. Lastly, through computational simulations we compare the state-of-art solutions of the literature with our proposal and we show a near optimal performance of the latter in terms of throughput and outage rate.
We consider adversarial machine learning based attacks on power allocation where the base station (BS) allocates its transmit power to multiple orthogonal subcarriers by using a deep neural network (DNN) to serve multiple user equipments (UEs). The D NN that corresponds to a regression model is trained with channel gains as the input and allocated transmit powers as the output. While the BS allocates the transmit power to the UEs to maximize rates for all UEs, there is an adversary that aims to minimize these rates. The adversary may be an external transmitter that aims to manipulate the inputs to the DNN by interfering with the pilot signals that are transmitted to measure the channel gain. Alternatively, the adversary may be a rogue UE that transmits fabricated channel estimates to the BS. In both cases, the adversary carefully crafts adversarial perturbations to manipulate the inputs to the DNN of the BS subject to an upper bound on the strengths of these perturbations. We consider the attacks targeted on a single UE or all UEs. We compare these attacks with a benchmark, where the adversary scales down the input to the DNN. We show that adversarial attacks are much more effective than the benchmark attack in terms of reducing the rate of communications. We also show that adversarial attacks are robust to the uncertainty at the adversary including the erroneous knowledge of channel gains and the potential errors in exercising the attacks exactly as specified.
In this paper, the problem of dynamic spectrum sensing and aggregation is investigated in a wireless network containing N correlated channels, where these channels are occupied or vacant following an unknown joint 2-state Markov model. At each time s lot, a single cognitive user with certain bandwidth requirement either stays idle or selects a segment comprising C (C < N) contiguous channels to sense. Then, the vacant channels in the selected segment will be aggregated for satisfying the user requirement. The user receives a binary feedback signal indicating whether the transmission is successful or not (i.e., ACK signal) after each transmission, and makes next decision based on the sensing channel states. Here, we aim to find a policy that can maximize the number of successful transmissions without interrupting the primary users (PUs). The problem can be considered as a partially observable Markov decision process (POMDP) due to without full observation of system environment. We implement a Deep Q-Network (DQN) to address the challenge of unknown system dynamics and computational expenses. The performance of DQN, Q-Learning, and the Improvident Policy with known system dynamics is evaluated through simulations. The simulation results show that DQN can achieve near-optimal performance among different system scenarios only based on partial observations and ACK signals.
In this paper, we propose a joint radio and core resource allocation framework for NFV-enabled networks. In the proposed system model, the goal is to maximize energy efficiency (EE), by guaranteeing end-to-end (E2E) quality of service (QoS) for diffe rent service types. To this end, we formulate an optimization problem in which power and spectrum resources are allocated in the radio part. In the core part, the chaining, placement, and scheduling of functions are performed to ensure the QoS of all users. This joint optimization problem is modeled as a Markov decision process (MDP), considering time-varying characteristics of the available resources and wireless channels. A soft actor-critic deep reinforcement learning (SAC-DRL) algorithm based on the maximum entropy framework is subsequently utilized to solve the above MDP. Numerical results reveal that the proposed joint approach based on the SAC-DRL algorithm could significantly reduce energy consumption compared to the case in which R-RA and NFV-RA problems are optimized separately.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا