ترغب بنشر مسار تعليمي؟ اضغط هنا

A Sensitivity Analysis of Attention-Gated Convolutional Neural Networks for Sentence Classification

61   0   0.0 ( 0 )
 نشر من قبل Yang Liu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we investigate the effect of different hyperparameters as well as different combinations of hyperparameters settings on the performance of the Attention-Gated Convolutional Neural Networks (AGCNNs), e.g., the kernel window size, the number of feature maps, the keep rate of the dropout layer, and the activation function. We draw practical advice from a wide range of empirical results. Through the sensitivity analysis, we further improve the hyperparameters settings of AGCNNs. Experiments show that our proposals could achieve an average of 0.81% and 0.67% improvements on AGCNN-NLReLU-rand and AGCNN-SELU-rand, respectively; and an average of 0.47% and 0.45% improvements on AGCNN-NLReLU-static and AGCNN-SELU-static, respectively.



قيم البحث

اقرأ أيضاً

Summarization based on text extraction is inherently limited, but generation-style abstractive methods have proven challenging to build. In this work, we propose a fully data-driven approach to abstractive sentence summarization. Our method utilizes a local attention-based model that generates each word of the summary conditioned on the input sentence. While the model is structurally simple, it can easily be trained end-to-end and scales to a large amount of training data. The model shows significant performance gains on the DUC-2004 shared task compared with several strong baselines.
The role of social media, in particular microblogging platforms such as Twitter, as a conduit for actionable and tactical information during disasters is increasingly acknowledged. However, time-critical analysis of big crisis data on social media st reams brings challenges to machine learning techniques, especially the ones that use supervised learning. The Scarcity of labeled data, particularly in the early hours of a crisis, delays the machine learning process. The current state-of-the-art classification methods require a significant amount of labeled data specific to a particular event for training plus a lot of feature engineering to achieve best results. In this work, we introduce neural network based classification methods for binary and multi-class tweet classification task. We show that neural network based models do not require any feature engineering and perform better than state-of-the-art methods. In the early hours of a disaster when no labeled data is available, our proposed method makes the best use of the out-of-event data and achieves good results.
We introduce a convolutional recurrent neural network (CRNN) for music tagging. CRNNs take advantage of convolutional neural networks (CNNs) for local feature extraction and recurrent neural networks for temporal summarisation of the extracted featur es. We compare CRNN with three CNN structures that have been used for music tagging while controlling the number of parameters with respect to their performance and training time per sample. Overall, we found that CRNNs show a strong performance with respect to the number of parameter and training time, indicating the effectiveness of its hybrid structure in music feature extraction and feature summarisation.
Aspect-level sentiment classification aims to identify the sentiment expressed towards some aspects given context sentences. In this paper, we introduce an attention-over-attention (AOA) neural network for aspect level sentiment classification. Our a pproach models aspects and sentences in a joint way and explicitly captures the interaction between aspects and context sentences. With the AOA module, our model jointly learns the representations for aspects and sentences, and automatically focuses on the important parts in sentences. Our experiments on laptop and restaurant datasets demonstrate our approach outperforms previous LSTM-based architectures.
We introduce a tree-structured attention neural network for sentences and small phrases and apply it to the problem of sentiment classification. Our model expands the current recursive models by incorporating structural information around a node of a syntactic tree using both bottom-up and top-down information propagation. Also, the model utilizes structural attention to identify the most salient representations during the construction of the syntactic tree. To our knowledge, the proposed models achieve state of the art performance on the Stanford Sentiment Treebank dataset.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا