ﻻ يوجد ملخص باللغة العربية
The role of social media, in particular microblogging platforms such as Twitter, as a conduit for actionable and tactical information during disasters is increasingly acknowledged. However, time-critical analysis of big crisis data on social media streams brings challenges to machine learning techniques, especially the ones that use supervised learning. The Scarcity of labeled data, particularly in the early hours of a crisis, delays the machine learning process. The current state-of-the-art classification methods require a significant amount of labeled data specific to a particular event for training plus a lot of feature engineering to achieve best results. In this work, we introduce neural network based classification methods for binary and multi-class tweet classification task. We show that neural network based models do not require any feature engineering and perform better than state-of-the-art methods. In the early hours of a disaster when no labeled data is available, our proposed method makes the best use of the out-of-event data and achieves good results.
The Machine Recognition of Crystallization Outcomes (MARCO) initiative has assembled roughly half a million annotated images of macromolecular crystallization experiments from various sources and setups. Here, state-of-the-art machine learning algori
Classification of polarimetric synthetic aperture radar (PolSAR) images is an active research area with a major role in environmental applications. The traditional Machine Learning (ML) methods proposed in this domain generally focus on utilizing hig
Classification of crisis events, such as natural disasters, terrorist attacks and pandemics, is a crucial task to create early signals and inform relevant parties for spontaneous actions to reduce overall damage. Despite crisis such as natural disast
In this paper, we investigate the effect of different hyperparameters as well as different combinations of hyperparameters settings on the performance of the Attention-Gated Convolutional Neural Networks (AGCNNs), e.g., the kernel window size, the nu
Accurately and rapidly classifying exoplanet candidates from transit surveys is a goal of growing importance as the data rates from space-based survey missions increases. This is especially true for NASAs TESS mission which generates thousands of new