ﻻ يوجد ملخص باللغة العربية
Estimating the volume of a convex body is a central problem in convex geometry and can be viewed as a continuous version of counting. We present a quantum algorithm that estimates the volume of an $n$-dimensional convex body within multiplicative error $epsilon$ using $tilde{O}(n^{3}+n^{2.5}/epsilon)$ queries to a membership oracle and $tilde{O}(n^{5}+n^{4.5}/epsilon)$ additional arithmetic operations. For comparison, the best known classical algorithm uses $tilde{O}(n^{4}+n^{3}/epsilon^{2})$ queries and $tilde{O}(n^{6}+n^{5}/epsilon^{2})$ additional arithmetic operations. To the best of our knowledge, this is the first quantum speedup for volume estimation. Our algorithm is based on a refined framework for speeding up simulated annealing algorithms that might be of independent interest. This framework applies in the setting of Chebyshev cooling, where the solution is expressed as a telescoping product of ratios, each having bounded variance. We develop several novel techniques when implementing our framework, including a theory of continuous-space quantum walks with rigorous bounds on discretization error.
While recent work suggests that quantum computers can speed up the solution of semidefinite programs, little is known about the quantum complexity of more general convex optimization. We present a quantum algorithm that can optimize a convex function
We study to what extent quantum algorithms can speed up solving convex optimization problems. Following the classical literature we assume access to a convex set via various oracles, and we examine the efficiency of reductions between the different o
We explore whether quantum advantages can be found for the zeroth-order online convex optimization problem, which is also known as bandit convex optimization with multi-point feedback. In this setting, given access to zeroth-order oracles (that is, t
The performance of a quantum information processing protocol is ultimately judged by distinguishability measures that quantify how distinguishable the actual result of the protocol is from the ideal case. The most prominent distinguishability measure
We present a quantum algorithm for simulating the dynamics of Hamiltonians that are not necessarily sparse. Our algorithm is based on the input model where the entries of the Hamiltonian are stored in a data structure in a quantum random access memor