ﻻ يوجد ملخص باللغة العربية
We study to what extent quantum algorithms can speed up solving convex optimization problems. Following the classical literature we assume access to a convex set via various oracles, and we examine the efficiency of reductions between the different oracles. In particular, we show how a separation oracle can be implemented using $tilde{O}(1)$ quantum queries to a membership oracle, which is an exponential quantum speed-up over the $Omega(n)$ membership queries that are needed classically. We show that a quantum computer can very efficiently compute an approximate subgradient of a convex Lipschitz function. Combining this with a simplification of recent classical work of Lee, Sidford, and Vempala gives our efficient separation oracle. This in turn implies, via a known algorithm, that $tilde{O}(n)$ quantum queries to a membership oracle suffice to implement an optimization oracle (the best known classical upper bound on the number of membership queries is quadratic). We also prove several lower bounds: $Omega(sqrt{n})$ quantum separation (or membership) queries are needed for optimization if the algorithm knows an interior point of the convex set, and $Omega(n)$ quantum separation queries are needed if it does not.
While recent work suggests that quantum computers can speed up the solution of semidefinite programs, little is known about the quantum complexity of more general convex optimization. We present a quantum algorithm that can optimize a convex function
Estimating the volume of a convex body is a central problem in convex geometry and can be viewed as a continuous version of counting. We present a quantum algorithm that estimates the volume of an $n$-dimensional convex body within multiplicative err
We provide new adaptive first-order methods for constrained convex optimization. Our main algorithms AdaACSA and AdaAGD+ are accelerated methods, which are universal in the sense that they achieve nearly-optimal convergence rates for both smooth and
This paper addresses quantum circuit mapping for Noisy Intermediate-Scale Quantum (NISQ) computers. Since NISQ computers constraint two-qubit operations on limited couplings, an input circuit must be transformed into an equivalent output circuit obey
We explore whether quantum advantages can be found for the zeroth-order online convex optimization problem, which is also known as bandit convex optimization with multi-point feedback. In this setting, given access to zeroth-order oracles (that is, t