ترغب بنشر مسار تعليمي؟ اضغط هنا

Divining the Shape of Nascent Polymer Crystal Nuclei

318   0   0.0 ( 0 )
 نشر من قبل Kyle Hall
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate that nascent polymer crystals (i.e., nuclei) are anisotropic entities, with neither spherical nor cylindrical geometry, in contrast to previous assumptions. In fact, cylindrical, spherical, and other high symmetry geometries are thermodynamically unfavorable. Moreover, post-critical transitions are necessary to achieve the lamellae that ultimately arise during the crystallization of semicrystalline polymers. We also highlight how inaccurate treatments of polymer nucleation can lead to substantial errors (e.g., orders of magnitude discrepancies in predicted nucleation rates). These insights are based on quantitative analysis of over four million crystal clusters from the crystallization of prototypical entangled polyethylene melts. New comprehensive bottom-up models are needed to capture polymer nucleation.



قيم البحث

اقرأ أيضاً

For sedimenting colloidal hard spheres, the propagation and broadening of the crystal-fluid interface is studied by Brownian dynamics computer simulations of an initially homogeneous sample. Two different types of interface broadenings are observed: the first occurs during growth and is correlated with the interface velocity, the second is concomitant with the splitting of the crystal-fluid interface into the crystal-amorphous and amorphous-liquid interfaces. The latter width is strongly peaked as a function of the gravitational driving strength with a huge amplitude relative to its equilibrium counterpart.
We have employed molecular dynamics simulations based on the TIP4P/2005 water model to investigate the local structural, dynamical, and dielectric properties of the two recently reported body-centered-cubic and face-centered-cubic plastic crystal pha ses of water. Our results reveal significant differences in the local orientational structure and rotational dynamics of water molecules for the two polymorphs. The probability distributions of trigonal and tetrahedral order parameters exhibit a multi-modal structure, implying the existence of significant local orientational heterogeneities, particularly in the face-centered-cubic phase. The calculated hydrogen bond statistics and dynamics provide further indications of the existence of a strongly heterogeneous and rapidly interconverting local orientational structural network in both polymorphs. We have observed a hindered molecular rotation, much more pronounced in the body-centered-cubic phase, which is reflected by the decay of the fourth-order Legendre reorientational correlation functions and angular Van Hove functions. Molecular rotation, however, is additionally hindered in the high-pressure liquid compared to the plastic crystal phase. The results obtained also reveal significant differences in the dielectric properties of the polymorphs due to the different dipolar orientational correlation characterizing each phase.
253 - M. Watzlawek , C. N. Likos , 1999
The phase diagram of star polymer solutions in a good solvent is obtained over a wide range of densities and arm numbers by Monte Carlo simulations. The effective interaction between the stars is modeled by an ultrasoft pair potential which is logari thmic in the core-core distance. Among the stable phases are a fluid as well as body-centered cubic, face-centered cubic, body-centered orthogonal, and diamond crystals. In a limited range of arm numbers, reentrant melting and reentrant freezing transitions occur for increasing density.
177 - B. Xu , R. Pinol , M. Nono-Djamen 2009
A series of amphiphilic LC block copolymers, in which the hydrophobic block is a smectic polymer poly(4-methoxyphenyl 4-(6-acryloyloxy-hexyloxy)-benzoate) (PA6ester1) and the hydrophilic block is polyethyleneglycol (PEG), were synthesized and charact erized. The self-assembly of one of them in both the pure state and the dilute aqueous solution was investigated in detail. Nano-structures in the pure state were studied by SAXS and WAXS on samples aligned by a magnetic field. A hexagonal cylindrical micro-segregation phase was observed with a lattice distance of 11.2 nm. The PEG blocks are in the cylinder, while the smectic polymer blocks form a matrix with layer spacing 2.4 nm and layer normal parallel to the long axis of the cylinders. Faceted unilamellar polymer vesicles, polymersomes, were formed in water, as revealed by cryo-TEM. In the lyotropic bilayer membrane of these polymersomes, the thermotropic smectic order in the hydrophobic block is clearly visible with layer normal parallel to the membrane surface.
We present the first experimental study on the simultaneous capillary instability amongst viscous concentric rings suspended atop an immiscible medium. The rings ruptured upon annealing, with three types of phase correlation between neighboring rings . In the case of weak substrate confinement, the rings ruptured independently when they were sparsely distanced, but via an out-of-phase mode when packed closer. If the substrate confinement was strong, the rings would rupture via an in-phase mode, resulting in radially aligned droplets. The concentric ring geometry caused a competition between the phase correlation of neighboring rings and the kinetically favorable wavelength, yielding an intriguing, recursive surface pattern. This frustrated pattern formation behavior was accounted for by a scaling analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا