ﻻ يوجد ملخص باللغة العربية
For sedimenting colloidal hard spheres, the propagation and broadening of the crystal-fluid interface is studied by Brownian dynamics computer simulations of an initially homogeneous sample. Two different types of interface broadenings are observed: the first occurs during growth and is correlated with the interface velocity, the second is concomitant with the splitting of the crystal-fluid interface into the crystal-amorphous and amorphous-liquid interfaces. The latter width is strongly peaked as a function of the gravitational driving strength with a huge amplitude relative to its equilibrium counterpart.
We demonstrate that nascent polymer crystals (i.e., nuclei) are anisotropic entities, with neither spherical nor cylindrical geometry, in contrast to previous assumptions. In fact, cylindrical, spherical, and other high symmetry geometries are thermo
We construct a theoretical model for the dynamics of a microscale colloidal particle, modeled as an interval, moving horizontally on a DNA-coated surface, modelled as a line coated with springs that can stick to the interval. Averaging over the fast
We have employed molecular dynamics simulations based on the TIP4P/2005 water model to investigate the local structural, dynamical, and dielectric properties of the two recently reported body-centered-cubic and face-centered-cubic plastic crystal pha
The interfacial free energy is a central quantity in crystallization from the meta-stable melt. In suspensions of charged colloidal spheres, nucleation and growth kinetics can be accurately measured from optical experiments. In previous work, from th
In this article, we demonstrate a method for inducing reversible crystal-to-crystal transitions in binary mixtures of soft colloidal particles. Through a controlled decrease of salinity and increasingly dominating electrostatic interactions, a single