ﻻ يوجد ملخص باللغة العربية
We formulate explicitly the necessary and sufficient conditions for the local invertibility of a field transformation involving derivative terms. Our approach is to apply the method of characteristics of differential equations, by treating such a transformation as differential equations that give new variables in terms of original ones. The obtained results generalise the well-known and widely used inverse function theorem. Taking into account that field transformations are ubiquitous in modern physics and mathematics, our criteria for invertibility will find many useful applications.
We discuss a field transformation from fields $psi_a$ to other fields $phi_i$ that involves derivatives, $phi_i = bar phi_i(psi_a, partial_alpha psi_a, ldots ;x^mu)$, and derive conditions for this transformation to be invertible, primarily focusing
Quantum supermaps are a higher-order generalization of quantum maps, taking quantum maps to quantum maps. It is known that any completely positive, trace non-increasing (CPTNI) map can be performed as part of a quantum measurement. By providing an ex
Matrix regularity is a key to various problems in applied mathematics. The sufficient conditions, used for checking regularity of interval parametric matrices, usually fail in case of large parameter intervals. We present necessary and sufficient con
Convergence of the gradient descent algorithm has been attracting renewed interest due to its utility in deep learning applications. Even as multiple variants of gradient descent were proposed, the assumption that the gradient of the objective is Lip
In a previous work, we introduced the Collatz polynomials; these are the polynomials $left[P_N(z)right]_{Ninmathbb{N}}$ such that $left[z^0right]P_N = N$ and $left[z^{k+1}right]P_N = cleft(left[z^kright]P_Nright)$, where $c:mathbb{N}rightarrow mathbb