ﻻ يوجد ملخص باللغة العربية
In a previous work, we introduced the Collatz polynomials; these are the polynomials $left[P_N(z)right]_{Ninmathbb{N}}$ such that $left[z^0right]P_N = N$ and $left[z^{k+1}right]P_N = cleft(left[z^kright]P_Nright)$, where $c:mathbb{N}rightarrow mathbb{N}$ is the Collatz function $1rightarrow 0$, $2nrightarrow n$, $2n+1rightarrow 3n+2$ (for example, $P_5(z) = 5 + 8z + 4z^2 + 2z^3 + z^4$). In this article, we prove that all zeros of $P_N$ (which we call Collatz zeros) lie in an annulus centered at the origin, with outer radius 2 and inner radius a function of the largest odd iterate of $N$. Moreover, using an extension of the Enestrom-Kakeya Theorem, we prove that $|z| = 2$ for a root of $P_N$ if and only if the Collatz trajectory of $N$ has a certain form; as a corollary, the set of $N$ for which our upper bound is an equality is sparse in $mathbb{N}$. Inspired by these results, we close with some questions for further study.
The Collatz Conjecture (also known as the 3x+1 Problem) proposes that the following algorithm will, after a certain number of iterations, always yield the number 1: given a natural number, multiply by three and add one if the number is odd, halve the
In this paper we shall use the boundary Schwarz lemma of Osserman to obtain some generalizations and refinements of some well known results concerning the maximum modulus of the polynomials with restricted zeros due to Turan, Dubinin and others.
We formulate explicitly the necessary and sufficient conditions for the local invertibility of a field transformation involving derivative terms. Our approach is to apply the method of characteristics of differential equations, by treating such a tra
In this contribution we are interested in proving that a given observation-driven model is identifiable. In the case of a GARCH(p, q) model, a simple sufficient condition has been established in [1] for showing the consistency of the quasi-maximum li
Matrix regularity is a key to various problems in applied mathematics. The sufficient conditions, used for checking regularity of interval parametric matrices, usually fail in case of large parameter intervals. We present necessary and sufficient con