ترغب بنشر مسار تعليمي؟ اضغط هنا

On vector and matrix Riemann-Hilbert problems for KdV shock waves

280   0   0.0 ( 0 )
 نشر من قبل Gerald Teschl
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper discusses some general aspects and techniques associated with the long-time asymptotics of steplike solutions of the Korteweg-de Vries (KdV) equation via vector Riemann--Hilbert problems. We also elaborate on an ill-posedness of the matrix Riemann-Hilbert problems for the KdV case. To the best of our knowledge this is the first time such ill-posedness is discussed in applications of Riemann--Hilbert theory. Furthermore, we rigorously justify the asymptotics for the shock wave in the elliptic zone derived previously.



قيم البحث

اقرأ أيضاً

189 - Fudong Wang , Wen-Xiu Ma 2020
We study the asymptotic behavior of Riemann-Hilbert problems (RHP) arising in the AKNS hierarchy of integrable equations. Our analysis is based on the $dbar$-steepest descent method. We consider RHPs arising from the inverse scattering transform of t he AKNS hierarchy with $H^{1,1}(R)$ initial data. The analysis will be divided into three regions: fast decay region, oscillating region and self-similarity region (the Painleve region). The resulting formulas can be directly applied to study the long-time asymptotic of the solutions of integrable equations such as NLS, mKdV and their higher-order generalizations.
The present paper is dedicated to integrable models with Mikhailov reduction groups $G_R simeq mathbb{D}_h.$ Their Lax representation allows us to prove, that their solution is equivalent to solving Riemann-Hilbert problems, whose contours depend on the realization of the $G_R$-action on the spectral parameter. Two new examples of Nonlinear Evolution Equations (NLEE) with $mathbb{D}_h$ symmetries are presented.
We show that the KdV flow evolves any real singular initial profile q of the form q=r+r^2, where rinL_{loc}^2, r|_{R_+}=0 into a meromorphic function with no real poles.
We take a closer look at the Riemann-Hilbert problem associated to one-gap solutions of the Korteweg-de Vries equation. To gain more insight, we reformulate it as a scalar Riemann-Hilbert problem on the torus. This enables us to derive deductively th e model vector-valued and singular matrix-valued solutions in terms of Jacobi theta functions. We compare our results with those obtained in recent literature.
169 - Alexei Rybkin 2011
We are concerned with the Cauchy problem for the KdV equation for nonsmooth locally integrable initial profiles qs which are, in a certain sense, essentially bounded from below and q(x)=O(e^{-cx^{{epsilon}}}),xrightarrow+infty, with some positive c a nd {epsilon}. Using the inverse scattering transform, we show that the KdV flow turns such initial data into a function which is (1) meromorphic (in the space variable) on the whole complex plane if {epsilon}>1/2, (2) meromorphic on a strip around the real line if {epsilon}=1/2, and (3) Gevrey regular if {epsilon}<1/2. Note that qs need not have any decay or pattern of behavior at -infty.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا