ﻻ يوجد ملخص باللغة العربية
We take a closer look at the Riemann-Hilbert problem associated to one-gap solutions of the Korteweg-de Vries equation. To gain more insight, we reformulate it as a scalar Riemann-Hilbert problem on the torus. This enables us to derive deductively the model vector-valued and singular matrix-valued solutions in terms of Jacobi theta functions. We compare our results with those obtained in recent literature.
We develop an inverse scattering transform formalism for the good Boussinesq equation on the line. Assuming that the solution exists, we show that it can be expressed in terms of the solution of a $3 times 3$ matrix Riemann-Hilbert problem. The Riema
A 2D problem of acoustic wave scattering by a segment bearing impedance boundary conditions is considered. In the current paper (the first part of a series of two) some preliminary steps are made, namely, the diffraction problem is reduced to two mat
This paper discusses some general aspects and techniques associated with the long-time asymptotics of steplike solutions of the Korteweg-de Vries (KdV) equation via vector Riemann--Hilbert problems. We also elaborate on an ill-posedness of the matrix
In this paper we prove that the Benjamin-Ono equation, when considered on the torus, is an integrable (pseudo)differential equation in the strongest possible sense: it admits global Birkhoff coordinates on the space $L^2(T)$. These are coordinates wh
An electrical potential U on a bordered Riemann surface X with conductivity function sigma>0 satisfies equation d(sigma d^cU)=0. The problem of effective reconstruction of sigma is studied. We extend to the case of Riemann surfaces the reconstruction