ﻻ يوجد ملخص باللغة العربية
The unsigned p-Willmore functional introduced in cite{mondino2011} generalizes important geometric functionals which measure the area and Willmore energy of immersed surfaces. Presently, techniques from cite{dziuk2008} are adapted to compute the first variation of this functional as a weak-form system of equations, which are subsequently used to develop a model for the p-Willmore flow of closed surfaces in $mathbb{R}^3$. This model is amenable to constraints on surface area and enclosed volume, and is shown to decrease the p-Willmore energy monotonically over time. In addition, a penalty-based regularization procedure is formulated to prevent artificial mesh degeneration along the flow; inspired by a conformality condition derived in cite{kamberov1996}, this procedure encourages angle-preservation in a closed and oriented surface immersion as it evolves. Following this, a finite-element discretization of both systems is discussed, and an application to mesh editing is presented.
In this corrigendum, we offer a correction to [J. Korean. Math. Soc., 54 (2017), pp. 461--477]. We construct a counterexample for the strengthened Cauchy--Schwarz inequality used in the original paper. In addition, we provide a new proof for Lemma 5
In this paper, the optimal choice of the interior penalty parameter of the discontinuous Galerkin finite element methods for both the elliptic problems and the Biots systems are studied by utilizing the neural network and machine learning. It is cruc
In this paper, we consider the minimization of a Tikhonov functional with an $ell_1$ penalty for solving linear inverse problems with sparsity constraints. One of the many approaches used to solve this problem uses the Nemskii operator to transform t
We investigate moduli of planar circular quadrilaterals symmetric with respect to both the coordinate axes. First we develop an analytic approach which reduces this problem to ODEs and devise a numeric method to find out the accessory parameters. Thi
The main purpose of this article is to develop a novel refinement strategy for four-dimensional hybrid meshes based on cubic pyramids. This optimal refinement strategy subdivides a given cubic pyramid into a conforming set of congruent cubic pyramids