ﻻ يوجد ملخص باللغة العربية
In this paper, we study the two-facility location game on a line with optional preference where the acceptable set of facilities for each agent could be different and an agents cost is his distance to the closest facility within his acceptable set. The objective is to minimize the total cost of all agents while achieving strategyproofness. We design a deterministic strategyproof mechanism for the problem with approximation ratio of 2.75, improving upon the earlier best ratio of n/2+1.
We study the multistage $K$-facility reallocation problem on the real line, where we maintain $K$ facility locations over $T$ stages, based on the stage-dependent locations of $n$ agents. Each agent is connected to the nearest facility at each stage,
In this paper, we consider the colorful $k$-center problem, which is a generalization of the well-known $k$-center problem. Here, we are given red and blue points in a metric space, and a coverage requirement for each color. The goal is to find the s
We study dynamic matching in an infinite-horizon stochastic market. While all agents are potentially compatible with each other, some are hard-to-match and others are easy-to-match. Agents prefer to be matched as soon as possible and matches are form
We give two fully dynamic algorithms that maintain a $(1+varepsilon)$-approximation of the weight $M$ of the minimum spanning forest of an $n$-node graph $G$ with edges weights in $[1,W]$, for any $varepsilon>0$. (1) Our deterministic algorithm tak
MAX CLIQUE problem (MCP) is an NPO problem, which asks to find the largest complete sub-graph in a graph $G, G = (V, E)$ (directed or undirected). MCP is well known to be $NP-Hard$ to approximate in polynomial time with an approximation ratio of $1 +