ﻻ يوجد ملخص باللغة العربية
We study the multistage $K$-facility reallocation problem on the real line, where we maintain $K$ facility locations over $T$ stages, based on the stage-dependent locations of $n$ agents. Each agent is connected to the nearest facility at each stage, and the facilities may move from one stage to another, to accommodate different agent locations. The objective is to minimize the connection cost of the agents plus the total moving cost of the facilities, over all stages. $K$-facility reallocation was introduced by de Keijzer and Wojtczak, where they mostly focused on the special case of a single facility. Using an LP-based approach, we present a polynomial time algorithm that computes the optimal solution for any number of facilities. We also consider online $K$-facility reallocation, where the algorithm becomes aware of agent locations in a stage-by-stage fashion. By exploiting an interesting connection to the classical $K$-server problem, we present a constant-competitive algorithm for $K = 2$ facilities.
In this paper, we study the two-facility location game on a line with optional preference where the acceptable set of facilities for each agent could be different and an agents cost is his distance to the closest facility within his acceptable set. T
In this paper we consider several facility location problems with applications to cost and social welfare optimization, when the area map is encoded as a binary (0,1) mxn matrix. We present algorithmic solutions for all the problems. Some cases are t
The Chamberlin-Courant and Monroe rules are fundamental and well-studied rules in the literature of multi-winner elections. The problem of determining if there exists a committee of size k that has a Chamberlin-Courant (respectively, Monroe) score of
We study dynamic matching in an infinite-horizon stochastic market. While all agents are potentially compatible with each other, some are hard-to-match and others are easy-to-match. Agents prefer to be matched as soon as possible and matches are form
Consider an online facility assignment problem where a set of facilities $F = { f_1, f_2, f_3, cdots, f_{|F|} }$ of equal capacity $l$ is situated on a metric space and customers arrive one by one in an online manner on that space. We assign a custom