ﻻ يوجد ملخص باللغة العربية
We introduce super quantum Airy structures, which provide a supersymmetric generalization of quantum Airy structures. We prove that to a given super quantum Airy structure one can assign a unique set of free energies, which satisfy a supersymmetric generalization of the topological recursion. We reveal and discuss various properties of these supersymmetric structures, in particular their gauge transformations, classical limit, peculiar role of fermionic variables, and graphical representation of recursion relations. Furthermore, we present various examples of super quantum Airy structures, both finite-dimensional -- which include well known superalgebras and super Frobenius algebras, and whose classification scheme we also discuss -- as well as infinite-dimensional, that arise in the realm of vertex operator super algebras.
We discuss the dynamical quantum systems which turn out to be bi-unitary with respect to the same alternative Hermitian structures in a infinite-dimensional complex Hilbert space. We give a necessary and sufficient condition so that the Hermitian str
Topological recursion associates to a spectral curve, a sequence of meromorphic differential forms. A tangent space to the moduli space of spectral curves (its space of deformations) is locally described by meromorphic 1-forms, and we use form-cycle
It is shown that the causal structure associated to string-like solutions of the Fadeev-Niemi (FN) model is described by an effective metric. Remarkably, the surfaces characterising the causal replacement depend on the energy momentum tensor of the b
We discuss transformations generated by dynamical quantum systems which are bi-unitary, i.e. unitary with respect to a pair of Hermitian structures on an infinite-dimensional complex Hilbert space. We introduce the notion of Hermitian structures in g
We discuss quantum analogues of minimal surfaces in Euclidean spaces and tori.