ترغب بنشر مسار تعليمي؟ اضغط هنا

Nontrivial Causal Structures Engendered by Knotted Solitons

123   0   0.0 ( 0 )
 نشر من قبل Erico Goulart
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Erico Goulart




اسأل ChatGPT حول البحث

It is shown that the causal structure associated to string-like solutions of the Fadeev-Niemi (FN) model is described by an effective metric. Remarkably, the surfaces characterising the causal replacement depend on the energy momentum tensor of the background soliton and carry implicitly a topological invariant $pi_{3}(mathbb{S}^2)$. As a consequence, it follows that the pre- image curves in $mathbb{R}^3$ nontrivialy define directions where the cones remain unchanged. It turns out that these results may be of importance in understanding time dependent solutions (collisions/scatterings) numerically or analytically.



قيم البحث

اقرأ أيضاً

We present a general construction of divergence-free knotted vector fields from complex scalar fields, whose closed field lines encode many kinds of knots and links, including torus knots, their cables, the figure-8 knot and its generalizations. As f inite-energy physical fields they represent initial states for fields such as the magnetic field in a plasma, or the vorticity field in a fluid. We give a systematic procedure for calculating the vector potential, starting from complex scalar functions with knotted zero filaments, thus enabling an explicit computation of the helicity of these knotted fields. The construction can be used to generate isolated knotted flux tubes, filled by knots encoded in the lines of the vector field. Lastly we give examples of manifestly knotted vector fields with vanishing helicity. Our results provide building blocks for analytical models and simulations alike.
146 - R. S. Ward 2018
Hopf solitons in the Skyrme-Faddeev system on $R^3$ typically have a complicated structure, in particular when the Hopf number Q is large. By contrast, if we work on a compact 3-manifold M, and the energy functional consists only of the Skyrme term ( the strong-coupling limit), then the picture simplifies. There is a topological lower bound $Egeq Q$ on the energy, and the local minima of E can look simple even for large Q. The aim here is to describe and investigate some of these solutions, when M is $S^3$, $T^3$ or $S^2 times S^1$. In addition, we review the more elementary baby-Skyrme system, with M being $S^2$ or $T^2$.
We introduce an ensemble of infinite causal triangulations, called the uniform infinite causal triangulation, and show that it is equivalent to an ensemble of infinite trees, the uniform infinite planar tree. It is proved that in both cases the Hausd orff dimension almost surely equals 2. The infinite causal triangulations are shown to be almost surely recurrent or, equivalently, their spectral dimension is almost surely less than or equal to 2. We also establish that for certain reduc
The present work tackles the existence of local gauge symmetries in the setting of Algebraic Quantum Field Theory (AQFT). The net of causal loops, previously introduced by the authors, is a model independent construction of a covariant net of local C *-algebras on any 4-dimensional globally hyperbolic spacetime, aimed to capture some structural properties of any reasonable quantum gauge theory. In fact, representations of this net can be described by causal and covariant connection systems, and the local gauge transformations arise as maps between equivalent connection systems. The present paper completes these abstract results, realizing QED as a representation of the net of causal loops in Minkowski spacetime. More precisely, we map the quantum electromagnetic field F{mu}{ u}, not free in general, into a representation of the net of causal loops and show that the corresponding connection system and local gauge transformations find a counterpart in terms of F{mu}{ u}.
We introduce super quantum Airy structures, which provide a supersymmetric generalization of quantum Airy structures. We prove that to a given super quantum Airy structure one can assign a unique set of free energies, which satisfy a supersymmetric g eneralization of the topological recursion. We reveal and discuss various properties of these supersymmetric structures, in particular their gauge transformations, classical limit, peculiar role of fermionic variables, and graphical representation of recursion relations. Furthermore, we present various examples of super quantum Airy structures, both finite-dimensional -- which include well known superalgebras and super Frobenius algebras, and whose classification scheme we also discuss -- as well as infinite-dimensional, that arise in the realm of vertex operator super algebras.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا