ترغب بنشر مسار تعليمي؟ اضغط هنا

Step-by-Step Community Detection in Volume-Regular Graphs

230   0   0.0 ( 0 )
 نشر من قبل Emilio Cruciani
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Spectral techniques have proved amongst the most effective approaches to graph clustering. However, in general they require explicit computation of the main eigenvectors of a suitable matrix (usually the Laplacian matrix of the graph). Recent work (e.g., Becchetti et al., SODA 2017) suggests that observing the temporal evolution of the power method applied to an initial random vector may, at least in some cases, provide enough information on the space spanned by the first two eigenvectors, so as to allow recovery of a hidden partition without explicit eigenvector computations. While the results of Becchetti et al. apply to perfectly balanced partitions and/or graphs that exhibit very strong forms of regularity, we extend their approach to graphs containing a hidden $k$ partition and characterized by a milder form of volume-regularity. We show that the class of $k$-volume-regular graphs is the largest class of undirected (possibly weighted) graphs whose transition matrix admits $k$ stepwise eigenvectors (i.e., vectors that are constant over each set of the hidden partition). To obtain this result, we highlight a connection between volume regularity and lumpability of Markov chains. Moreover, we prove that if the stepwise eigenvectors are those associated to the first $k$ eigenvalues and the gap between the $k$-th and the ($k$+1)-th eigenvalues is sufficiently large, the averaging dynamics of Becchetti et al. recovers the underlying community structure of the graph in logarithmic time, with high probability.



قيم البحث

اقرأ أيضاً

We study the problem of finding large cuts in $d$-regular triangle-free graphs. In prior work, Shearer (1992) gives a randomised algorithm that finds a cut of expected size $(1/2 + 0.177/sqrt{d})m$, where $m$ is the number of edges. We give a simpler algorithm that does much better: it finds a cut of expected size $(1/2 + 0.28125/sqrt{d})m$. As a corollary, this shows that in any $d$-regular triangle-free graph there exists a cut of at least this size. Our algorithm can be interpreted as a very efficient randomised distributed algorithm: each node needs to produce only one random bit, and the algorithm runs in one synchronous communication round. This work is also a case study of applying computational techniques in the design of distributed algorithms: our algorithm was designed by a computer program that searched for optimal algorithms for small values of $d$.
Existing approaches for graph neural networks commonly suffer from the oversmoothing issue, regardless of how neighborhoods are aggregated. Most methods also focus on transductive scenarios for fixed graphs, leading to poor generalization for unseen graphs. To address these issues, we propose a new graph neural network that considers both edge-based neighborhood relationships and node-based entity features, i.e. Graph Entities with Step Mixture via random walk (GESM). GESM employs a mixture of various steps through random walk to alleviate the oversmoothing problem, attention to dynamically reflect interrelations depending on node information, and structure-based regularization to enhance embedding representation. With intensive experiments, we show that the proposed GESM achieves state-of-the-art or comparable performances on eight benchmark graph datasets comprising transductive and inductive learning tasks. Furthermore, we empirically demonstrate the significance of considering global information.
Szemeredis Regularity Lemma is a very useful tool of extremal combinatorics. Recently, several refinements of this seminal result were obtained for special, more structured classes of graphs. We survey these results in their rich combinatorial contex t. In particular, we stress the link to the theory of (structural) sparsity, which leads to alternative proofs, refinements and solutions of open problems. It is interesting to note that many of these classes present challenging problems. Nevertheless, from the point of view of regularity lemma type statements, they appear as gentle classes.
Data-to-text generation can be conceptually divided into two parts: ordering and structuring the information (planning), and generating fluent language describing the information (realization). Modern neural generation systems conflate these two step s into a single end-to-end differentiable system. We propose to split the generation process into a symbolic text-planning stage that is faithful to the input, followed by a neural generation stage that focuses only on realization. For training a plan-to-text generator, we present a method for matching reference texts to their corresponding text plans. For inference time, we describe a method for selecting high-quality text plans for new inputs. We implement and evaluate our approach on the WebNLG benchmark. Our results demonstrate that decoupling text planning from neural realization indeed improves the systems reliability and adequacy while maintaining fluent output. We observe improvements both in BLEU scores and in manual evaluations. Another benefit of our approach is the ability to output diverse realizations of the same input, paving the way to explicit control over the generated text structure.
Switches are operations which make local changes to the edges of a graph, usually with the aim of preserving the vertex degrees. We study a restricted set of switches, called triangle switches. Each triangle switch creates or deletes at least one tri angle. Triangle switches can be used to define Markov chains which generate graphs with a given degree sequence and with many more triangles (3-cycles) than is typical in a uniformly random graph with the same degrees. We show that the set of triangle switches connects the set of all $d$-regular graphs on $n$ vertices, for all $dgeq 3$. Hence, any Markov chain which assigns positive probability to all triangle switches is irreducible on these graphs. We also investigate this question for 2-regular graphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا