ﻻ يوجد ملخص باللغة العربية
Spectral techniques have proved amongst the most effective approaches to graph clustering. However, in general they require explicit computation of the main eigenvectors of a suitable matrix (usually the Laplacian matrix of the graph). Recent work (e.g., Becchetti et al., SODA 2017) suggests that observing the temporal evolution of the power method applied to an initial random vector may, at least in some cases, provide enough information on the space spanned by the first two eigenvectors, so as to allow recovery of a hidden partition without explicit eigenvector computations. While the results of Becchetti et al. apply to perfectly balanced partitions and/or graphs that exhibit very strong forms of regularity, we extend their approach to graphs containing a hidden $k$ partition and characterized by a milder form of volume-regularity. We show that the class of $k$-volume-regular graphs is the largest class of undirected (possibly weighted) graphs whose transition matrix admits $k$ stepwise eigenvectors (i.e., vectors that are constant over each set of the hidden partition). To obtain this result, we highlight a connection between volume regularity and lumpability of Markov chains. Moreover, we prove that if the stepwise eigenvectors are those associated to the first $k$ eigenvalues and the gap between the $k$-th and the ($k$+1)-th eigenvalues is sufficiently large, the averaging dynamics of Becchetti et al. recovers the underlying community structure of the graph in logarithmic time, with high probability.
We study the problem of finding large cuts in $d$-regular triangle-free graphs. In prior work, Shearer (1992) gives a randomised algorithm that finds a cut of expected size $(1/2 + 0.177/sqrt{d})m$, where $m$ is the number of edges. We give a simpler
Existing approaches for graph neural networks commonly suffer from the oversmoothing issue, regardless of how neighborhoods are aggregated. Most methods also focus on transductive scenarios for fixed graphs, leading to poor generalization for unseen
Szemeredis Regularity Lemma is a very useful tool of extremal combinatorics. Recently, several refinements of this seminal result were obtained for special, more structured classes of graphs. We survey these results in their rich combinatorial contex
Data-to-text generation can be conceptually divided into two parts: ordering and structuring the information (planning), and generating fluent language describing the information (realization). Modern neural generation systems conflate these two step
Switches are operations which make local changes to the edges of a graph, usually with the aim of preserving the vertex degrees. We study a restricted set of switches, called triangle switches. Each triangle switch creates or deletes at least one tri