ﻻ يوجد ملخص باللغة العربية
Let M = R n or possibly a Riemannian, non compact manifold. We consider semi-excited resonances for a h-differential operator H(x, hD x ; h) on L 2 (M) induced by a non-degenerate periodic orbit $gamma$ 0 of semi-hyperbolic type, which is contained in the non critical energy surface {H 0 = 0}. By semi-hyperbolic, we mean that the linearized Poincar{e} map dP 0 associated with $gamma$ 0 has at least one eigenvalue of modulus greater (or less) than 1, and one eigenvalue of modulus equal to 1, and by non-degenerate that 1 is not an eigenvalue, which implies a family $gamma$(E) with the same properties. It is known that an infinite number of periodic orbits generally cluster near $gamma$ 0 , with periods approximately multiples of its primitive period. We construct the monodromy and Grushin operator, adapting some arguments by [NoSjZw], [SjZw], and compare with those obtained in [LouRo], which ignore the additional orbits near $gamma$ 0 , but still give the right quantization rule for the family $gamma$(E).
It is expected in physics that the homogeneous quantum Boltzmann equation with Fermi-Dirac or Bose-Einstein statistics and with Maxwell-Boltzmann operator (neglecting effect of the statistics) for the weak coupled gases will converge to the homogeneo
In cite{GUW} we introduced a class of semi-classical functions of isotropic type, starting with a model case and applying Fourier integral operators associated with canonical transformations. These functions are a substantial generalization of the os
This paper is dedicated to the construction of global weak solutions to the quantum Navier-Stokes equation, for any initial value with bounded energy and entropy. The construction is uniform with respect to the Planck constant. This allows to perform
A semi-regular tiling of the hyperbolic plane is a tessellation by regular geodesic polygons with the property that each vertex has the same vertex-type, which is a cyclic tuple of integers that determine the number of sides of the polygons surroundi
We give a new and constructive proof of the existence of global-in-time weak solutions of the 3-dimensional incompressible semi-geostrophic equations (SG) in geostrophic coordinates, for arbitrary initial measures with compact support. This new proof